www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetig und Differenzierbar?
Stetig und Differenzierbar? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetig und Differenzierbar?: Idee
Status: (Frage) beantwortet Status 
Datum: 22:06 So 30.04.2017
Autor: Kopfvilla

Aufgabe
[mm] f(x)=\begin{cases} ax^2+b, & \mbox{für } x \mbox{ größergleich 1} \\ x, & \mbox{für } x \mbox{ echt kleiner 1} \end{cases} [/mm]

für welche Werte a,b [mm] \in \IR [/mm] ist die Funktion stetig und differenzierbar?

Guten Tag meine Idee ist folgende,
da h(x)=x ist und eine Steigung von 1 hat muss auch [mm] g(x)=ax^2+b [/mm] an dem Punkt (1,1) eine Steigung von 1 haben.

Zuerst habe ich die Funktion g(x) abgeleitet folgt
g'(x)=2ax+b

jetzt gleich 1 setzen
2ax+b=1

für x setzen wir 1 ein

2a+b=1 (Den Term nach a und nach b aufgelösen)

[mm] a=\bruch{1-b}{2} [/mm]

b=1-2a

Habe ich damit die Aufgabe gelöst für a und b dass sie an dem Punkt (1,1) für g(x) und h(x) stetig und differenzierbar sind?

Über Ergänzungen würden ich mich freuen

LG Kopfvilla

        
Bezug
Stetig und Differenzierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 30.04.2017
Autor: meili

Hallo Kopfvilla,

> [mm]f(x)=\begin{cases} ax^2+b, & \mbox{für } x \mbox{ größergleich 1} \\ x, & \mbox{für } x \mbox{ echt kleiner 1} \end{cases}[/mm]
>  
> für welche Werte a,b [mm]\in \IR[/mm] ist die Funktion stetig und
> differenzierbar?
>  Guten Tag meine Idee ist folgende,
>   da h(x)=x ist und eine Steigung von 1 hat muss auch
> [mm]g(x)=ax^2+b[/mm] an dem Punkt (1,1) eine Steigung von 1 haben.

[ok]

>  
> Zuerst habe ich die Funktion g(x) abgeleitet folgt
> g'(x)=2ax+b

[notok]
g'(x) = 2ax

>  
> jetzt gleich 1 setzen

[ok]

>  2ax+b=1

2ax = 1

>  
> für x setzen wir 1 ein

[ok]

>  
> 2a+b=1 (Den Term nach a und nach b aufgelösen)

2a = 1

>  
> [mm]a=\bruch{1-b}{2}[/mm]

>  
> b=1-2a
>  
> Habe ich damit die Aufgabe gelöst für a und b dass sie an
> dem Punkt (1,1) für g(x) und h(x) stetig und
> differenzierbar sind?

Nein noch nicht ganz.
Bis jetzt hast du nur die Ableitung im Punkt (1,1) benutzt.
Aber wie du richtig bemerkt hast, geht f(x) durch den Punkt (1,1),
wenn f stetig und differenzierbar ist.
Wenn du noch g(1) = 1 benutzt, bekommst du auch eine Zahl für b heraus.

>  
> Über Ergänzungen würden ich mich freuen
>  
> LG Kopfvilla

Gruß
meili

Bezug
        
Bezug
Stetig und Differenzierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Mo 01.05.2017
Autor: Diophant

Hallo,

um den Hinweis von meili zu konkretisieren:

Mit den Bedingungen [mm]f(1)=1 \wedge f'(1)=1[/mm] bekommt man ein Lineares Gleichungssystem zur Bestimmung von a und b.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 18m 7. HJKweseleit
USons/Bedeutung von dx, dt in Formel
Status vor 1h 53m 9. HJKweseleit
S8-10/Ableitung
Status vor 2h 14m 8. HJKweseleit
ZahlTheo/rat. Zahl = Summe von Brüchen
Status vor 2h 51m 3. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 3h 36m 3. HJKweseleit
SGeradEbene/Parallele Ebenen
^ Seitenanfang ^
www.vorhilfe.de