www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit im 0 Punkt
Stetigkeit im 0 Punkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im 0 Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:24 Mo 14.01.2013
Autor: Frosch20

Aufgabe
Die Funktion:

[mm] f(x)=\begin{cases} 0, & \mbox{für } x \mbox{aus R/Q} \\ x, & \mbox{für } x \mbox{aus Q} \end{cases} [/mm]

ist im 0 Pkt. stetig

Mein Ansatz war bislang der hier:

Es gibt eine Folge [mm] (x_n) [/mm] mit [mm] x_n\in \IQ [/mm] für alle [mm] n\in \N, [/mm] sodass

lim [mm] x_n=0, [/mm] und es gibt eine Folge [mm] y_n [/mm] in [mm] \IR [/mm] \ [mm] \IQ [/mm] sodass für alle natürlichen Zahlen lim [mm] y_n=0 [/mm] gilt.

Also gilt:

0=lim [mm] f(y_n)=lim f(x_n) [/mm] = 0

Also ist die Funktion im Nullpunkt stetig.

Darf man das so machen, bzw. ist das aussreichend ?

Wenn nicht, warum nicht ?
Wie soll ich vorgehen ?

Ein Ansatz wäre hilfreich,
vielen dank,
mfg. Lé Frog :)

        
Bezug
Stetigkeit im 0 Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 01:13 Mo 14.01.2013
Autor: Marcel

Hallo,

> Die Funktion:
>  
> [mm]f(x)=\begin{cases} 0, & \mbox{für } x \mbox{aus R/Q} \\ x, & \mbox{für } x \mbox{aus Q} \end{cases}[/mm]
>  
> ist im 0 Pkt. stetig
>  Mein Ansatz war bislang der hier:
>  
> Es gibt eine Folge [mm](x_n)[/mm] mit [mm]x_n\in \IQ[/mm] für alle [mm]n\in \N,[/mm]

Du meinst $n [mm] \in \IN$! [/mm] (Klick auf die Formel!)

> sodass
>  
> lim [mm]x_n=0,[/mm] und es gibt eine Folge [mm]y_n[/mm] in [mm]\IR[/mm] \ [mm]\IQ[/mm] sodass
> für alle natürlichen Zahlen

Du wolltest wohl "... alle natürlichen Zahlen [mm] $n\,$... [/mm] " schreiben, und dann
"... so dass:..."

> lim [mm]y_n=0[/mm] gilt.
>  
> Also gilt:
>  
> 0=lim [mm]f(y_n)=lim f(x_n)[/mm] = 0
>  
> Also ist die Funktion im Nullpunkt stetig.
>  
> Darf man das so machen, bzw. ist das aussreichend ?

Nein!

> Wenn nicht, warum nicht ?

Weil Du dabei nicht nur sagen darfst, "dass es eine Folge gibt". Sondern Du
musst sagen:
Ist [mm] $(x_n)_n$ [/mm] IRGENDEINE Folge in [mm] $\IQ$ [/mm] mit [mm] $\lim x_n=0\,,$ [/mm] so folgt [mm] $\lim f(x_n)=\lim 0=0\,,$ [/mm]
(das ist quasi trivial) und ist [mm] $(y_n)_n$ [/mm] IRGENDEINE Folge in [mm] $\IR \setminus \IQ\,$ [/mm] mit
[mm] $\lim y_n=0\,,$ [/mm] so folgt [mm] $\lim f(y_n)=0\,.$ [/mm] (Nebenbei: Warum folgt [mm] $\lim f(y_n)=0$ [/mm] denn eigentlich?)

(Anders gesagt: Ersetze jeweils das (rotmarkierte) "es gibt eine (Folge)"
durch "für alle (Folgen)" - und begründe dann Deine Behauptungen auch!)

Denn eigentlich musst Du zeigen: Für alle Folgen [mm] $(r_n)_n$ [/mm] in [mm] $\IR$ [/mm] mit [mm] $\lim r_n=0$ [/mm] folgt
[mm] $\lim f(r_n)=0\;\;\;(=f(0))\,,$ [/mm] aber das kannst Du mit obigen Zwischenschritten dann erledigen.

(Dazu nimmst Du nun IRGENDEINE Folge [mm] $(r_n)_{n \in \IN}$ [/mm] mit Werten in
[mm] $\IR$ [/mm] her, die zudem [mm] $\lim r_n=0$ [/mm] erfülle. (D.h. es werden die [mm] $r_n$ [/mm] nicht
konkretisiert als etwa [mm] $r_n=1/n^2\,,$ [/mm] denn das wäre schon wieder eine
SPEZIELLE reellwertige Nullfolge, sondern Du weißt und darfst im
Folgenden nur die Eigenschaften benutzen, dass [mm] $\IR \ni r_n \to [/mm] 0$ nach
Voraussetzung gilt!) Dann musst Du irgendwie [mm] $f(r_n) \to [/mm] 0=f(0)$ begründen.
Übrigens finde ich es hier am einfachsten, wenn Du das sogar einfach so
machst, also sagst:
"Gelte [mm] $\IR \ni r_n \to [/mm] 0$..."
und dann begründe, dass [mm] $|f(r_n)| \le |r_n|$ [/mm] gilt. Denn was folgt denn
insbesondere für die Folge [mm] $(|r_n|)_n\,,$ [/mm] wenn [mm] $\IR \ni r_n \to [/mm] 0$?)

Dass Dein obiges "es gibt" keinen Sinn macht, um die Aufgabe zu lösen,
zeigt das einfache Beispiel von
$$g [mm] \colon \IR \to \IR$$ [/mm]
definiert durch
[mm] $$g(x):=\begin{cases} 1, & \mbox{für } x \in \IQ \cap [0,\,\infty) \\ 0, & \mbox{für } x \in (\IR \setminus \IQ) \cap [0,\,\infty)\\0, & \mbox{für } x \in \IQ \cap (-\infty,\,0)\\1, & \mbox{für } x \in (\IR \setminus \IQ) \cap (-\infty,\,0) \end{cases}\,.$$ [/mm]

Diese Funktion ist unstetig in [mm] $x_0=0\,,$ [/mm] dennoch gibt es sowohl eine
Folge [mm] $(x_n)_n$ [/mm] in [mm] $\IQ$ [/mm] mit [mm] $\lim g(x_n)=\lim [/mm] 1=g(0)$ (bspw. [mm] $x_1=1/n$) [/mm]
und es gibt auch eine Folge [mm] $(y_n)_n$ [/mm] in [mm] $\IR \setminus \IQ$ [/mm] mit [mm] $\lim g(y_n)=\lim 1=g(0)\,$ [/mm]
(bspw. [mm] $y_n=-\sqrt{2}/n$). [/mm]

Gruß,
  Marcel

Bezug
                
Bezug
Stetigkeit im 0 Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:00 Mo 14.01.2013
Autor: Frosch20


> Hallo,
>  
> > Die Funktion:
>  >  
> > [mm]f(x)=\begin{cases} 0, & \mbox{für } x \mbox{aus R/Q} \\ x, & \mbox{für } x \mbox{aus Q} \end{cases}[/mm]
>  
> >  

> > ist im 0 Pkt. stetig
>  >  Mein Ansatz war bislang der hier:
>  >  
> > Es gibt eine Folge [mm](x_n)[/mm] mit [mm]x_n\in \IQ[/mm] für alle [mm]n\in \N,[/mm]
>  
> Du meinst [mm]n \in \IN[/mm]! (Klick auf die Formel!)
>  
> > sodass
>  >  
> > lim [mm]x_n=0,[/mm] und es gibt eine Folge [mm]y_n[/mm] in [mm]\IR[/mm] \ [mm]\IQ[/mm] sodass
> > für alle natürlichen Zahlen
>
> Du wolltest wohl "... alle natürlichen Zahlen [mm]n\,[/mm]... "
> schreiben, und dann
>  "... so dass:..."
>  
> > lim [mm]y_n=0[/mm] gilt.
>  >  
> > Also gilt:
>  >  
> > 0=lim [mm]f(y_n)=lim f(x_n)[/mm] = 0
>  >  
> > Also ist die Funktion im Nullpunkt stetig.
>  >  
> > Darf man das so machen, bzw. ist das aussreichend ?
>  
> Nein!
>  
> > Wenn nicht, warum nicht ?
>  
> Weil Du dabei nicht nur sagen darfst, "dass es eine Folge
> gibt". Sondern Du
>  musst sagen:
>  Ist [mm](x_n)_n[/mm] IRGENDEINE Folge in [mm]\IQ[/mm] mit [mm]\lim x_n=0\,,[/mm] so
> folgt [mm]\lim f(x_n)=\lim 0=0\,,[/mm]
> (das ist quasi trivial) und ist [mm](y_n)_n[/mm] IRGENDEINE Folge in
> [mm]\IR \setminus \IQ\,[/mm] mit
> [mm]\lim y_n=0\,,[/mm] so folgt [mm]\lim f(y_n)=0\,.[/mm] (Nebenbei: Warum
> folgt [mm]\lim f(y_n)=0[/mm] denn eigentlich?)
>  
> (Anders gesagt: Ersetze jeweils das (rotmarkierte) "es gibt
> eine (Folge)"
> durch "für alle (Folgen)" - und begründe dann Deine
> Behauptungen auch!)
>  
> Denn eigentlich musst Du zeigen: Für alle Folgen [mm](r_n)_n[/mm]
> in [mm]\IR[/mm] mit [mm]\lim r_n=0[/mm] folgt
> [mm]\lim f(r_n)=0\;\;\;(=f(0))\,,[/mm] aber das kannst Du mit obigen
> Zwischenschritten dann erledigen.
>  
> (Dazu nimmst Du nun IRGENDEINE Folge [mm](r_n)_{n \in \IN}[/mm] mit
> Werten in
>  [mm]\IR[/mm] her, die zudem [mm]\lim r_n=0[/mm] erfülle. (D.h. es werden
> die [mm]r_n[/mm] nicht
>  konkretisiert als etwa [mm]r_n=1/n^2\,,[/mm] denn das wäre schon
> wieder eine
> SPEZIELLE reellwertige Nullfolge, sondern Du weißt und
> darfst im
> Folgenden nur die Eigenschaften benutzen, dass [mm]\IR \ni r_n \to 0[/mm]
> nach
> Voraussetzung gilt!) Dann musst Du irgendwie [mm]f(r_n) \to 0=f(0)[/mm]
> begründen.

Ah okay, vielen dank.

> Übrigens finde ich es hier am einfachsten, wenn Du das
> sogar einfach so
> machst, also sagst:
>  "Gelte [mm]\IR \ni r_n \to 0[/mm]..."
>  und dann begründe, dass
> [mm]|f(r_n)| \le |r_n|[/mm] gilt. Denn was folgt denn
> insbesondere für die Folge [mm](|r_n|)_n\,,[/mm] wenn [mm]\IR \ni r_n \to 0[/mm]?)
>  

Also für die Filge [mm](|r_n|)_n\,,[/mm] folgt aus [mm]\IR \ni r_n \to 0[/mm]?) dass natürlich auch [mm](|r_n|)_n\,,[/mm] gegen 0 konvergiert. Mehr würde mir für die Folge jetz nicht einfallen.

> Dass Dein obiges "es gibt" keinen Sinn macht, um die
> Aufgabe zu lösen,
>  zeigt das einfache Beispiel von
> [mm]g \colon \IR \to \IR[/mm]
>  definiert durch
>  [mm]g(x):=\begin{cases} 1, & \mbox{für } x \in \IQ \cap [0,\,\infty) \\ 0, & \mbox{für } x \in (\IR \setminus \IQ) \cap [0,\,\infty)\\0, & \mbox{für } x \in \IQ \cap (-\infty,\,0)\\1, & \mbox{für } x \in (\IR \setminus \IQ) \cap (-\infty,\,0) \end{cases}\,.[/mm]
>  
> Diese Funktion ist unstetig in [mm]x_0=0\,,[/mm] dennoch gibt es
> sowohl eine
> Folge [mm](x_n)_n[/mm] in [mm]\IQ[/mm] mit [mm]\lim g(x_n)=\lim 1=g(0)[/mm] (bspw.
> [mm]x_1=1/n[/mm])
> und es gibt auch eine Folge [mm](y_n)_n[/mm] in [mm]\IR \setminus \IQ[/mm]
> mit [mm]\lim g(y_n)=\lim 1=g(0)\,[/mm]
> (bspw. [mm]y_n=-\sqrt{2}/n[/mm]).
>
> Gruß,
>    Marcel

Bezug
                        
Bezug
Stetigkeit im 0 Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mo 14.01.2013
Autor: meili

Hallo,


> > Übrigens finde ich es hier am einfachsten, wenn Du das
> > sogar einfach so
> > machst, also sagst:
>  >  "Gelte [mm]\IR \ni r_n \to 0[/mm]..."
>  >  und dann begründe,
> dass
> > [mm]|f(r_n)| \le |r_n|[/mm] gilt. Denn was folgt denn
> > insbesondere für die Folge [mm](|r_n|)_n\,,[/mm] wenn [mm]\IR \ni r_n \to 0[/mm]?)
>  
> >  

>
> Also für die Filge [mm](|r_n|)_n\,,[/mm] folgt aus [mm]\IR \ni r_n \to 0[/mm]?)
> dass natürlich auch [mm](|r_n|)_n\,,[/mm] gegen 0 konvergiert. Mehr
> würde mir für die Folge jetz nicht einfallen.

Das genügt ja auch.

Wichtig ist, dass Du [mm] $\limes_{n\rightarrow\infty} f(r_n) [/mm] = 0$ zeigst.

Dazu  reicht es (siehe oben), wenn [mm] $\limes_{n\rightarrow\infty} |r_n| [/mm]  = 0$ ist,
aber gut wäre noch eine Begründung zu finden,
warum  [mm]|f(r_n)| \le |r_n| \quad \forall n \in \IN[/mm] gilt.

>  
> > Dass Dein obiges "es gibt" keinen Sinn macht, um die
> > Aufgabe zu lösen,
>  >  zeigt das einfache Beispiel von
> > [mm]g \colon \IR \to \IR[/mm]
>  >  definiert durch
>  >  [mm]g(x):=\begin{cases} 1, & \mbox{für } x \in \IQ \cap [0,\,\infty) \\ 0, & \mbox{für } x \in (\IR \setminus \IQ) \cap [0,\,\infty)\\0, & \mbox{für } x \in \IQ \cap (-\infty,\,0)\\1, & \mbox{für } x \in (\IR \setminus \IQ) \cap (-\infty,\,0) \end{cases}\,.[/mm]
>  
> >  

> > Diese Funktion ist unstetig in [mm]x_0=0\,,[/mm] dennoch gibt es
> > sowohl eine
> > Folge [mm](x_n)_n[/mm] in [mm]\IQ[/mm] mit [mm]\lim g(x_n)=\lim 1=g(0)[/mm] (bspw.
> > [mm]x_1=1/n[/mm])
> > und es gibt auch eine Folge [mm](y_n)_n[/mm] in [mm]\IR \setminus \IQ[/mm]
> > mit [mm]\lim g(y_n)=\lim 1=g(0)\,[/mm]
> > (bspw. [mm]y_n=-\sqrt{2}/n[/mm]).
> >
> > Gruß,
>  >    Marcel  

Gruß
meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de