www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Tangenten Gleichung
Tangenten Gleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten Gleichung: Aufstellen der Kreisgleichung
Status: (Frage) beantwortet Status 
Datum: 18:35 Do 29.04.2010
Autor: diamOnd24

Aufgabe
Die Gerade t ist Tangente an den kreis k mit dem Mittelpunkt O(0/0). Stelle eine Gleichung des Kreises auf.
t:3x+y=10

Hi wiedereinmal.

Also bis jetzt haben wir himmer nur die Tangentengleichung berechnen müssen, jetzt kenn ich mich natürlich absolut nicht mehr aus.
Wie geht man da jetzt am Besten vor ?

lg maria

        
Bezug
Tangenten Gleichung: erst Normale
Status: (Antwort) fertig Status 
Datum: 18:40 Do 29.04.2010
Autor: Loddar

Hallo Maria!


Bestimme zunächst die Normale zur gegebenen Gerade und den Schnittpunkt dieser beiden Geraden.

Der Abstand dieses Schnittpunktes zum Ursprung liefert den gesuchten Kreisradius.


Gruß
Loddar


Bezug
                
Bezug
Tangenten Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Do 29.04.2010
Autor: diamOnd24

ok, also ich versuche das jetzt mal mit der normale aber ich glaube ich kenn mich da nicht aus.

3x+y=10 -> also dass is die tangentengleichung.
normale -> -3x+10= y ??? oder ist das nur die Steigung
ich kenn mich da mit den nomrlane nicht aus.

Bezug
                        
Bezug
Tangenten Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Do 29.04.2010
Autor: Steffi21

Hallo, die Tangente lautet [mm] y_t=-3x+10, [/mm] die gesuchte Normale steht senkrecht auf der Tangente, es gilt: [mm] m_t*m_n=-1, [/mm] wobei [mm] m_t [/mm] der Anstieg der Tangente ist, [mm] m_n [/mm] der Anstieg der Normale, Steffi

Bezug
                                
Bezug
Tangenten Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Do 29.04.2010
Autor: diamOnd24

ok sorry, aber diese formel habe ich noch nie gesehen aber danke. ich werde es nächste woche schon herausfinden. ich glaube es gibt einen einfachen weg. denn ihr sicher wisst nur ich versteh ihn so nicht.

Bezug
                                        
Bezug
Tangenten Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Do 29.04.2010
Autor: Steffi21

Hallo, dann gehe doch mal diesen Weg

[mm] m_t*m_n=-1 [/mm]

[mm] -3*m_n=-1 [/mm]

du siehst doch schon [mm] m_n= [/mm] ...

ich kenne keinen einfacheren Weg

Steffi

Bezug
                                                
Bezug
Tangenten Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Do 29.04.2010
Autor: diamOnd24

ok also das ist jetzt der normalvektor und den setzt ich jetzt in
n*P = n*X ein oder nicht ?

also 1/3 ?

Bezug
                                                        
Bezug
Tangenten Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Do 29.04.2010
Autor: Steffi21

Hallo, es wird doch, schön,  [mm] m_n=\bruch{1}{3} [/mm] ist korrekt, also [mm] y_n=\bruch{1}{3}x, [/mm] die Normale geht ja durch den Punkt (0;0)
jetzt gebe ich dir eine Skizze, schaue dir dazu auch den zweiten Hinweis von Loddar an,

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                                
Bezug
Tangenten Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Do 29.04.2010
Autor: diamOnd24

also kann ich jetzt in

n *P = n* X
einsetzen ? oder geht das anders.

Bezug
                                                                        
Bezug
Tangenten Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Do 29.04.2010
Autor: Steffi21

Hallo, was die Variablen n, P und X bedeuten ist mir nicht klar, berechne den Schnittpunkt beider Geraden durch Gleichsetzen

[mm] -3x+10=\bruch{1}{3}x [/mm]

du bekommst die Schnittstelle x= ...

dann die Schnittstelle in eine der beiden Geradengleichungen einsetzen, du bekommst den zugehörigen Funktionswert, hast somit den Schnittpunkt

Steffi



Bezug
                                                                                
Bezug
Tangenten Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Do 29.04.2010
Autor: diamOnd24

also x =3
und y= 1
ist das jetzt schon die kreisgleichung nicht oder ??

Bezug
                                                                                        
Bezug
Tangenten Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:58 Fr 30.04.2010
Autor: Steffi21

Hallo, der Punkt (3;1) ist doch keine Kreisgleichung, schaue dir meine Skizze an, du erkennst den Punkt (3;1), der Schnittpunkt von Tangente und Normale, der Radius vom Kreis ist der Abstand vom Punkt (0;0) bis Punkt (3;1), du kennst ganz bestimmt Herrn Pythagoras, der hilft dir bei der Bestimmung vom Radius weiter, zeichne dir auf der x-Achse von (0;0) bis (3;0) die eine Kathete ein und von (3;0) bis (3;1) die andere Kathete, Steffi

Bezug
                                                        
Bezug
Tangenten Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Do 29.04.2010
Autor: diamOnd24

hat sich erledigt, vielen dank
k: [mm] x^2 [/mm] + [mm] y^2 [/mm] = 10

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de