www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Taylorreihe Summe
Taylorreihe Summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe Summe: Summenschreibweise
Status: (Frage) beantwortet Status 
Datum: 22:35 Sa 12.05.2007
Autor: mathe-tu-muenchen

Hallo!

Ich wollte die Funktion f(x) = [mm] \wurzel{1+x} [/mm] in eine Taylorreihe entwickeln und bekam 1 + [mm] \bruch{1}{2} \cdot [/mm] x - [mm] \bruch{1}{2^2 \cdot{} 2} \cdot{}x^2 [/mm] +
[mm] \bruch{3}{2^3 \cdot{} 2 \cdot{}3} \cdot{}x^3 [/mm] - [mm] \bruch{3 \cdot{} 5}{2^4 \cdot{} 2 \cdot{}3 \cdot{}4} \cdot{}x^4 [/mm] + [mm] \bruch{3 \cdot{} 5 \cdot{} 7}{2^5 \cdot{} 2 \cdot{}3 \cdot{}4 \cdot{}5} \cdot{}x^5 [/mm] - ....

Wie kann ich das in Summenschreibweise anschreiben? Die [mm] 2^n [/mm] im Nenner sind ja leicht. Aber der Bruch hat ja dann immer die Form, dass oben so eine Art n! steht, nur dass die positiven zahlen fehlen und unten steht n!

z.B. für n = 4 [mm] \bruch{3 \cdot{} 5}{4!} [/mm]

Wie kann ich das anschreiben?

Danke!

        
Bezug
Taylorreihe Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 So 13.05.2007
Autor: barsch

Hi,

ich habe das einmal gesehen, als ich mich auf eine Klausur zu diesem Thema vorbereitet habe. Die Taylorentwicklung sieht etwas komisch aus, aber...

Naja, ich habe das Beispiel wieder nachgeschlagen und hier steht folgendes:

[mm] \wurzel{1+x}=1+\bruch{1}{2}x+\summe_{k=2}^{\infty}(-1)^{k-1}\bruch{1*3\cdots(2k-3)}{2*4\cdots(2k)}x^{k} [/mm]

MfG

barsch

Bezug
                
Bezug
Taylorreihe Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 So 13.05.2007
Autor: mathe-tu-muenchen

Diese Schreibweise entzieht sich meinem Verständnis. Also kann ich die Zahlenfolge 3 * 5 * 7 * 9 * 11 * ...... nicht als Fakultät mit einem Bruch darstellen?

Bezug
                        
Bezug
Taylorreihe Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 So 13.05.2007
Autor: barsch

Hi,

wie gesagt, habe ich die Formel dafür auch nachschlagen müssen.

> Also
> kann ich die Zahlenfolge 3 * 5 * 7 * 9 * 11 * ...... nicht
> als Fakultät mit einem Bruch darstellen?

>  Aber der Bruch hat ja dann immer die Form, dass oben so eine Art n! steht, nur dass die positiven zahlen fehlen und unten steht n!

Das hast du in deinem vorherigen Beitrag festgestellt. Und ich sehe da auch keine Möglichkeit, das als Fakultät darzustellen. Weil bei Fakultät kannst du ja keine Zahl "verschwinden" lassen, was du hier ja mit allen geraden Zahlen machen müsstest.

MfG


Bezug
                                
Bezug
Taylorreihe Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:16 Mo 14.05.2007
Autor: mathe-tu-muenchen

Ist dann wohl auch gar nicht mehr so einfach den Konvergenzradius der Taylorreihe zu bestimmen, zumal diese Schreibeweise für mich mathematisch nicht korrekt ist bzw. ich damit nicht weiterrechnen kann

Bezug
                                        
Bezug
Taylorreihe Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Mo 14.05.2007
Autor: wauwau

[mm] \wurzel{1+x}=1+\bruch{1}{2}x+\summe_{k=2}^{\infty}(-1)^{k-1}\bruch{1*3\cdots(2k-3)}{2*4\cdots(2k)}x^{k} [/mm]

[mm] 1*3\cdots(2k-3) [/mm] = [mm] \bruch{1*2*3*4*\cdots(2k-2)}{2*4*6*\cdots(2k-2)} [/mm] = [mm] \bruch{(2k-2)!}{2^{k-1}(k-1)!} [/mm]

[mm] 2*4\cdots(2k)=2^{k}*k! [/mm]

Das sollte dir helfen...

Jetzt kannst du mit der Stirlingschen Formel versuchen, den Konvergenzradius abzuschätzen...

Bezug
                        
Bezug
Taylorreihe Summe: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 06:50 Mo 14.05.2007
Autor: Steffi21

Hallo.

3 * 5 * 7 * 9 * 11 .... = (2n+1)! wobei n=1, 2 ....

Steffi


Bezug
                                
Bezug
Taylorreihe Summe: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 07:14 Mo 14.05.2007
Autor: MicMuc

3 * 5 * 7 * 9 * 11 .... = (2n+1)!  ist sicherlich falsch.

Es gilt:

(2n+1)!= 1*2*3*...*(2n)*(2n+1)

Was ginge, wäre:

$3*5*7* ... * (2n-1)* (2n+1)= [mm] \bruch{(2n+1)!}{ 2*(n!) }$ [/mm]

Dabei ist die Klammer im Nenner nicht notwendig und wurde hier nur zur Verdeutlichung gesetzt!

Bezug
        
Bezug
Taylorreihe Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Mo 14.05.2007
Autor: wauwau

[mm] \wurzel{1+x}=1+\bruch{1}{2}x+\summe_{k=2}^{\infty}(-1)^{k-1}\bruch{1*3\cdots(2k-3)}{2*4\cdots(2k)}x^{k} [/mm]

[mm] 1*3\cdots(2k-3) [/mm] = [mm] \bruch{1*2*3*4*\cdots(2k-2)}{2*4*6*\cdots(2k-2)} [/mm] = [mm] \bruch{(2k-2)!}{2^{k-1}(k-1)!} [/mm]

[mm] 2*4\cdots(2k)=2^{k}*k! [/mm]

Das sollte dir helfen...

Bezug
        
Bezug
Taylorreihe Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 Mo 14.05.2007
Autor: mathe-tu-muenchen

OK, dann ist die Summenschreibweise der Reihe

1 + [mm] \bruch{1}{2} \cdot{} \bruch{1}{1!} [/mm] x - [mm] \bruch{1}{2^2} \cdot{} \bruch{1}{2!} x^2 [/mm] + [mm] \bruch{3}{2^3} \cdot{} \bruch{1}{3!} x^3 [/mm] - [mm] \bruch{3 \cdot{} 5}{2^4} \cdot{} \bruch{1}{4!} x^4 [/mm] + [mm] \bruch{3 \cdot{} 5 \cdot{} 7}{2^5} \cdot{} \bruch{1}{5!} x^5 [/mm] - ...

1 + [mm] \bruch{1}{2} [/mm] x + [mm] \summe_{k=2}^{\infty} \bruch{(2n-3)!}{2^n \cdot{} n! \cdot{} 2 \cdot{} (n-1)!} \cdot{} x^n \cdot{} (-1)^{n-1} [/mm]

oder???

Bezug
                
Bezug
Taylorreihe Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Mo 14.05.2007
Autor: wauwau



[mm] \wurzel{1+x}=1+\bruch{1}{2}x+\summe_{k=2}^{\infty}(-1)^{k-1}\bruch{(2k-2)!}{2^{2k-1}k!(k-1)!}x^{k} [/mm]



Bezug
                        
Bezug
Taylorreihe Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mo 14.05.2007
Autor: mathe-tu-muenchen

Hast du meinen Ausdruck nochmals vereinfacht? bzw. wie bist du drauf gekommen? bzw. stimmt meine erste Summenformel nicht?

Bezug
                                
Bezug
Taylorreihe Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Mo 14.05.2007
Autor: wauwau

Der Nenner in deiner Summe stimmt nicht...

Bezug
                                        
Bezug
Taylorreihe Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mo 14.05.2007
Autor: mathe-tu-muenchen

yeah jetzt hab ich's selbst richtig umgeformt, oder???

1 + [mm] \bruch{1}{2} [/mm] x + [mm] \summe_{k=2}^{\infty} \bruch{(2n-3)!}{2^{n} \cdot{} n! \cdot{} 2^{n-2} \cdot{} (n-2)!} \cdot{} x^n \cdot{} (-1)^{n-1} [/mm]



Bezug
                                                
Bezug
Taylorreihe Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Di 15.05.2007
Autor: wauwau

ja so kann man es auch schreiben...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de