www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Ueberqueren eines Landes
Ueberqueren eines Landes < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ueberqueren eines Landes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 18.10.2009
Autor: lisa11

Aufgabe
Beim Ueberqueren eines Landes muss ein Flugkörper fünf Radarstationen überfliegen. Von jeder Station werde er unabhänig  von den anderen mit der Wahrscheinlichkeit 0.02 entdeckt.

a) Mit welcher Wahrscheinlichkeit wird er während eines Einzelfluges  entdeckt?

b) Mit welcher Wahrscheinlichkeit  wird er bei zehn Flügen nicht entdeckt?

hallo,

mein Ansatz:

a) E : entdeckt  
     Radarstationen: 1,2,3,4,5
    [mm] \overline{E} [/mm] : nicht entdeckt    


zu a)
P(1 [mm] \cap [/mm] E)/P(E) + [mm] P(1\cap [/mm] E)/P(E) + [mm] P(3\cap [/mm] E)/P(E) + [mm] P(4\cap [/mm] E)/P(E) +
P(5 [mm] \cap [/mm] E)/P(E)

die Radarstationen haben jeweils eine Wahrscheinlichkeit von 1/5
E : = 0.02


zu b)
[mm] \overline{E} [/mm] = 0.98 Wahrscheinlichkeit

bei 10 Flügen  1/10*( P(1 [mm] \cap \overline{E} [/mm] ) / [mm] P(\overline{E}) [/mm] +
P(2 [mm] \cap \overline{E}) [/mm] / [mm] P(\overline{E}) [/mm] +  P(3 [mm] \cap \overline{E}) [/mm] /
[mm] P(\overline{E}) [/mm] + P(4 [mm] \cap \overline{E}) [/mm] / [mm] P(\overline{E}) [/mm] +
P(5 [mm] \cap \overline{E}) [/mm] / [mm] P(\overline{E})) [/mm]



        
Bezug
Ueberqueren eines Landes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 So 18.10.2009
Autor: koepper

Hallo Lisa,

> Beim Ueberqueren eines Landes muss ein Flugkörper fünf
> Radarstationen überfliegen. Von jeder Station werde er
> unabhänig  von den anderen mit der Wahrscheinlichkeit 0.02
> entdeckt.
>  
> a) Mit welcher Wahrscheinlichkeit wird er während eines
> Einzelfluges  entdeckt?
>  
> b) Mit welcher Wahrscheinlichkeit  wird er bei zehn Flügen
> nicht entdeckt?
>  hallo,
>  
> mein Ansatz:
>  
> a) E : entdeckt  
> Radarstationen: 1,2,3,4,5
>      [mm]\overline{E}[/mm] : nicht entdeckt    
>
>
> zu a)
>   P(1 [mm]\cap[/mm] E)/P(E) + [mm]P(1\cap[/mm] E)/P(E) + [mm]P(3\cap[/mm] E)/P(E) +
> [mm]P(4\cap[/mm] E)/P(E) +
>   P(5 [mm]\cap[/mm] E)/P(E)
>  
> die Radarstationen haben jeweils eine Wahrscheinlichkeit
> von 1/5
>  E : = 0.02
>  
>
> zu b)
>   [mm]\overline{E}[/mm] = 0.98 Wahrscheinlichkeit
>  
> bei 10 Flügen  1/10*( P(1 [mm]\cap \overline{E}[/mm] ) /
> [mm]P(\overline{E})[/mm] +
>   P(2 [mm]\cap \overline{E})[/mm] / [mm]P(\overline{E})[/mm] +  P(3 [mm]\cap \overline{E})[/mm]
> /
>  [mm]P(\overline{E})[/mm] + P(4 [mm]\cap \overline{E})[/mm] / [mm]P(\overline{E})[/mm]
> +
>  P(5 [mm]\cap \overline{E})[/mm] / [mm]P(\overline{E}))[/mm]
>  

so richtig kann ich leider nicht nachvollziehen, was du machst. Aber denk mal ganz einfach:

in a.) betrachten wir das Gegenereignis, nämlich nicht entdeckt zu werden. Für jede Station ist die Wahrscheinlichkeit p, nicht entdeckt zu werden gleich 0,98. Also ist [mm] $0,98^5$ [/mm] die Wsk. insgesamt unentdeckt zu bleiben.

b.) ergibt sich dann leicht aus dem Ergebnis in a.)

LG
Will


Bezug
                
Bezug
Ueberqueren eines Landes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 So 18.10.2009
Autor: lisa11

1 - [mm] (0.98)^5 [/mm] ergibt dann b)

Bezug
                        
Bezug
Ueberqueren eines Landes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 So 18.10.2009
Autor: Steffi21

Hallo,

[mm] 1-0,98^{5} [/mm] ist die Wahrscheinlichkeit, bei einem Überflug entdeckt zu werden, die Wahrscheinlichkeit, bei einem Überflug nicht entdeckt zu werden ist [mm] 0,98^{5} [/mm] jetzt sind es 10 Flüge somit bekommst du eine Wahrscheinlichkeit von [mm] (0,98^{5})^{10}=0,98^{50} [/mm] nicht entdeckt zu werden,

Steffi


Bezug
                                
Bezug
Ueberqueren eines Landes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 So 18.10.2009
Autor: lisa11

gut danke für die hilfe die untere aufgabe sollte man auch noch ansehen wenn möglich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de