www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum überprüfungskontroll
Unterraum überprüfungskontroll < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum überprüfungskontroll: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:02 Mi 27.10.2010
Autor: kushkush

Aufgabe
9. Es soll angegeben werden, welche der Teilmengen Unterräume der Vektorräume sind. :

i) [mm] $\{\vektor{x\\x^{2}+x}| x \in \IR \} \subset \IR^{2}$ [/mm]

ii)
[mm] $\{\lambda \vektor{1\\-1} | \lambda \in \IR \} \cup \{ \lambda \vektor{2\\-3} | \lambda \in \IR \} \subset \IR^{2} [/mm] $


iii)$ [mm] \{p \in P_{n} | p(2) = 0 \} \subset P_{n}$,$ P_{n}$ [/mm] Raum vom Polynom Grad [mm] $\le [/mm] n$

Hallo,

hier: https://matheraum.de/read?i=724556 wurde das ja schon einmal durchgeführt. Ich habe die Definition mit dem 0 Element nicht explizit im Skript vorgegeben, daher lass ich das auch aus.

Ich habe überprüft, ob der Unterraum für die Addition und Skalarmultiplikation abgeschlossen ist.

i)
Prüfung Addition:

[mm] $\vektor{x\\x^{2}+x} [/mm] + [mm] \vektor{y\\y^{2}+y} [/mm] = [mm] \vektor {x+y\\ x^{2}+y^{2}}$ [/mm]

Gegenbeispiel auf Grund der Skalarmultiplikation mit y. Also kein Unterraum weil [mm] $x^{2}y^{2}$ [/mm] nicht in [mm] $\IR^{2}$ [/mm]

ii) Das Vereinigungssymbol verwirrt hier.

Addition:

[mm] $(\lambda \vektor{1 \\-1 } [/mm] + [mm] \lamba \vektor{x \\ y } \cup \lambda \vektor{2 \\ -3} [/mm] + [mm] \lambda \vektor{ x \\ y}$ [/mm]

also kein Unterraum deswegen?

iii)
also alle Polynome in die man 2 einsetzen kann und die dann 0 geben,

Addition:

[mm] $p_{1}(2)=0 [/mm] , [mm] p_{2}(2)=0 [/mm] $
[mm] $\Rightarrow p_{1}(2)+p_{2}(2)=0$ [/mm]

Sk. Multiplikation:
[mm] $\lambda p_{1}(2) [/mm] = 0 $

also ist das ein Unterraum




Stimmen meine Begründungen?

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Unterraum überprüfungskontroll: Antwort
Status: (Antwort) fertig Status 
Datum: 03:44 Mi 27.10.2010
Autor: meili

Hallo,

> 9. Es soll angegeben werden, welche der Teilmengen
> Unterräume der Vektorräume sind. :
>  
> i) [mm]\{\vektor{x\\x^{2}+x}| x \in \IR \} \subset \IR^{2}[/mm]
>  
> ii)
>  [mm]\{\lambda \vektor{1\\-1} | \lambda \in \IR \} \cup \{ \lambda \vektor{2\\-3} | \lambda \in \IR \} \subset \IR^{2}[/mm]
>
>
> iii)[mm] \{p \in P_{n} | p(2) = 0 \} \subset P_{n}[/mm],[mm] P_{n}[/mm] Raum
> vom Polynom Grad [mm]\le n[/mm]
>  Hallo,
>  
> hier: https://matheraum.de/read?i=724556 wurde das ja
> schon einmal durchgeführt. Ich habe die Definition mit dem
> 0 Element nicht explizit im Skript vorgegeben, daher lass
> ich das auch aus.
>
> Ich habe überprüft, ob der Unterraum für die Addition
> und Skalarmultiplikation abgeschlossen ist.
>
> i)
> Prüfung Addition:
>
> [mm]\vektor{x\\x^{2}+x} + \vektor{y\\y^{2}+y} = \vektor {x+y\\ x^{2}+y^{2}}[/mm]
>

[mm]\vektor{x\\x^{2}+x} + \vektor{y\\y^{2}+y} = \vektor {x+y\\ x^{2}+y^{2}+x+y} \not= \vektor {x+y\\ (x+y)^{2}+(x+y)} [/mm]

> Gegenbeispiel auf Grund der Skalarmultiplikation mit y.

Ja.

Aber da

[mm]y*\vektor{x\\x^{2}+x} = \vektor{yx\\yx^{2}+yx} \not= \vektor {yx\\ (yx)^{2}+yx}[/mm],  ist folgende Begründung

> Also kein Unterraum weil [mm]x^{2}y^{2}[/mm] nicht in [mm]\IR^{2}[/mm]

nicht gut.

>  
> ii) Das Vereinigungssymbol verwirrt hier.
>
> Addition:
>
> [mm](\lambda \vektor{1 \\-1 } + \lamba \vektor{x \\ y } \cup \lambda \vektor{2 \\ -3} + \lambda \vektor{ x \\ y}[/mm]
>  
> also kein Unterraum deswegen?

Es sollen zwei Elemente aus  [mm]\{\lambda \vektor{1\\-1} | \lambda \in \IR \} \cup \{ \lambda \vektor{2\\-3} | \lambda \in \IR \} \subset \IR^{2}[/mm] addiert werden, z.B.:
[mm] \vektor{1 \\-1 } + \vektor{2 \\ -3} = \vektor{ 3 \\ -4}[/mm]  [mm] ($\lambda$ [/mm] = 1, [mm] $\mu$ [/mm] = 1).
Ist [mm] $\vektor{ 3 \\ -4} \in \{\lambda \vektor{1\\-1} | \lambda \in \IR \} \cup \{ \lambda \vektor{2\\-3} | \lambda \in \IR \} \subset \IR^{2}$? [/mm]

>  
> iii)
>  also alle Polynome in die man 2 einsetzen kann und die
> dann 0 geben,
>
> Addition:
>  
> [mm]p_{1}(2)=0 , p_{2}(2)=0[/mm]
> [mm]\Rightarrow p_{1}(2)+p_{2}(2)=0[/mm]
>
> Sk. Multiplikation:
> [mm]\lambda p_{1}(2) = 0[/mm]
>
> also ist das ein Unterraum

[ok]

>
>
>
>
> Stimmen meine Begründungen?

Nein, ausgenommen bei (iii).

>
> Ich habe diese Frage in keinem anderen Forum gestellt.  

Gruß meili


Bezug
                
Bezug
Unterraum überprüfungskontroll: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mi 27.10.2010
Autor: kushkush


> Ist $ [mm] \vektor{ 3 \\ -4} \in \{\lambda \vektor{1\\-1} | \lambda \in \IR \} \cup \{ \lambda \vektor{2\\-3} | \lambda \in \IR \} \subset \IR^{2} [/mm] $

Ja. Also ist es doch ein Unterraum?


bei [mm] $\vektor{x\\x^{2}+x}$ [/mm] wähle ich als Skalar dann [mm] $y^{2}$, [/mm] was meine alte Begründung dann wieder richtig macht?


Danke


Bezug
                        
Bezug
Unterraum überprüfungskontroll: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Do 28.10.2010
Autor: meili

Hallo,

> > Ist [mm]\vektor{ 3 \\ -4} \in \{\lambda \vektor{1\\-1} | \lambda \in \IR \} \cup \{ \lambda \vektor{2\\-3} | \lambda \in \IR \} \subset \IR^{2}[/mm]
>  
> Ja. Also ist es doch ein Unterraum?

[notok]
Nein,  [mm]\vektor{ 3 \\ -4} \notin \{\lambda \vektor{1\\-1} | \lambda \in \IR \} \cup \{ \lambda \vektor{2\\-3} | \lambda \in \IR \}[/mm].
Wäre [mm] $\vektor{ 3 \\ -4} \in \{\lambda \vektor{1\\-1} | \lambda \in \IR \}$, [/mm] müsste nach der 1. Komponente von [mm] $\vektor{ 3 \\ -4}$ $\lambda [/mm] = 3$ sein, dann wird aber die 2. Komponente von [mm] $\vektor{ 3 \\ -4}$ [/mm] -3. Die 2. Komponente von [mm] $\vektor{ 3 \\ -4}$ [/mm] ist aber -4.
Wäre [mm] $\vektor{ 3 \\ -4} \in \{ \lambda \vektor{2\\-3} | \lambda \in \IR \}$, [/mm] müsste nach der 1. Komponente von [mm] $\vektor{ 3 \\ -4}$ $\lambda [/mm] = [mm] \bruch{3}{2}$ [/mm] sein, dann wird aber die 2. Komponente von [mm] $\vektor{ 3 \\ -4}$ $-\bruch{9}{2}. [/mm] Die 2. Komponente von [mm] $\vektor{ 3 \\ -4}$ [/mm] ist aber -4.

>
>
> bei [mm]\vektor{x\\x^{2}+x}[/mm] wähle ich als Skalar dann [mm]y^{2}[/mm],

Nein, damit lässt sich das nicht beheben. Es muss für jeden Skalar y gelten.
Ausserdem geht schon die Addition zweier Vektoren schief.

> was meine alte Begründung dann wieder richtig macht?
>
>
> Danke
>  

Gruß
meili

Bezug
                                
Bezug
Unterraum überprüfungskontroll: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Sa 30.10.2010
Autor: kushkush

Ja stimmt, [mm] $x^{2}+y^{2}$ [/mm] gleicht einem Paraboloid!

Danke vielmals.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de