www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Volumen - Zylinder
Volumen - Zylinder < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen - Zylinder: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 07:44 Do 02.08.2007
Autor: kati93

Aufgabe
Ich hab die vollständige Aufgabe angehängt!  

Guten Morgen,

bei dieser Aufgabe geht es mir nur um die Aufgabe a).
Ich bin von alleine nicht auf das Volumen gekommen,weil ich nicht wusste wie ich [mm] h_{1} [/mm] berechnen soll (von mir gelb markiert).
Das Vorgehen an sich war mir aber klar: Zylinder erweitern bis er so hoch ist wie der Kegel , also 10 cm. Dann das Volumen berechnen. Davon dann das Volumen des erweiterten Stücks, also mit der Höhe [mm] h_{1} [/mm] abziehen.
Ich bin aber wie gesagt nicht auf diese Höhe gekommen.
Da ja aber das Ergebnis in der Aufgabe angegeben war konnte ich ja "rückwärts" arbeiten und bin nun darauf gekommen,dass die die Höhe [mm] h_{1} [/mm] = r ist.
Nur leider weiss ich nicht warum das so ist?????

Liebe Grüße,

Kati

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Volumen - Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Do 02.08.2007
Autor: Somebody


> Ich hab die vollständige Aufgabe angehängt!
> Guten Morgen,
>
> bei dieser Aufgabe geht es mir nur um die Aufgabe a).
> Ich bin von alleine nicht auf das Volumen gekommen,weil ich
> nicht wusste wie ich [mm]h_{1}[/mm] berechnen soll (von mir gelb
> markiert).
> Das Vorgehen an sich war mir aber klar: Zylinder erweitern
> bis er so hoch ist wie der Kegel , also 10 cm. Dann das
> Volumen berechnen. Davon dann das Volumen des erweiterten
> Stücks, also mit der Höhe [mm]h_{1}[/mm] abziehen.
> Ich bin aber wie gesagt nicht auf diese Höhe gekommen.
> Da ja aber das Ergebnis in der Aufgabe angegeben war konnte
> ich ja "rückwärts" arbeiten und bin nun darauf
> gekommen,dass die die Höhe [mm]h_{1}[/mm] = r ist.

Dies ist ja sicher nicht generell richtig. Für $r=5$ z.B. ist [mm] $h_1=10$ [/mm] und nicht etwa $=5$.

> Nur leider weiss ich nicht warum das so ist?????

Betrachte die Situation in einer Ebene durch die Kegelachse: Du kannst den Strahlensatz anwenden (bzw. die beiden Dreiecke gebildet aus Kegelhöhe [mm] $h+h_1$ [/mm] und Kegelradius $10$ bzw. [mm] $h_1$ [/mm] und Zylinderradius $r$ sind ähnlich). Es muss daher gelten:
[mm]\frac{h+h_1}{10}=\frac{h_1}{r}[/mm]

Auflösen nach [mm] $h_1$ [/mm] eribt [mm] $h_1=\frac{10 r}{10-r}$ [/mm]

> [Dateianhang nicht öffentlich]


Bezug
                
Bezug
Volumen - Zylinder: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 11:25 Do 02.08.2007
Autor: Steffi21

Hallo somebody,

du hast den Strahlensatz leider falsch umgestellt:

[mm] \bruch{h+h_1}{10}=\bruch{h_1}{r} [/mm]

[mm] rh+rh_1=10h_1 [/mm]

[mm] rh=h_1(10-r) [/mm]

[mm] h_1=\bruch{rh}{10-r} [/mm]

Steffi


Bezug
                        
Bezug
Volumen - Zylinder: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 11:53 Do 02.08.2007
Autor: Somebody


> Hallo somebody,
>  
> du hast den Strahlensatz leider falsch umgestellt:

Das nicht, aber ich habe eben, möglicherweise zu Unrecht, angenommen, dass $h=10$ ist. Damit habe ich die Skizze vielleicht falsch interpretiert: insbesondere die konkreten Zahlenangaben $10$. Möglicherweise ist $10$ die Gesamthöhe und auch der Kegelradius.  - Na, ich war wohl beim Beantworten dieser Frage etwas gar hastig.
  Aber die Grundidee mit dem Strahlensatz bzw. der Ähnlichkeit ist doch sicher richtig. - Und das ist mir eigentlich die Hauptsache: das ganze, mit der Grundidee beginnend, selbst auch nachrechnen und auf Korrektheit prüfen sollte der Fragesteller in jedem Falle...


Bezug
        
Bezug
Volumen - Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Do 02.08.2007
Autor: Steffi21

Hallo,

ich möchte dir den Lösungsweg für a) vorstellen, zunächst Strahlensatz etwas anders aufstellen:

[mm] \bruch{h_1}{r}=\bruch{10}{10}=1 [/mm]

[mm] \bruch{10-h}{r}=1 [/mm]

10-h=r

h=10-r

Damit kannst du jetzt den Zylinder berechnen:

[mm] V=\pi r^{2}h [/mm]

[mm] V=\pi r^{2}(10-r)=\pi(10r^{2}-r^{3}) [/mm]

Steffi



Bezug
                
Bezug
Volumen - Zylinder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Do 02.08.2007
Autor: kati93

Vielen lieben Dank euch beiden!!!!
Ich hab den Strahlensatz überhaupt nicht in Erwägung gezogen!!! Wenn ich so mitten in einem anderen Themenbereich drin bin, vergess oder ignorier ich irgendwie immer alle anderen mathematischen Hilfen...
Danke schön!

Wünsch euch noch einen schönen Abend!

Liebe Grüße,

Kati

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de