www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Zwei Graphen um 1. Achse
Zwei Graphen um 1. Achse < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei Graphen um 1. Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mi 04.03.2009
Autor: die-nini

Aufgabe
Die von den Graphen zu y=-x+6 und y=-2x²+4x+6 eingeschlossene Fläche rotiert um die 1. Achse. Berechne das Volumen des entstehenden Körpers.

Ich weiß nicht wie ich mit beiden Graphen umgehen muss.. Die müssen doch auf jeden Fall Schnittpunkte haben mit der 1. Achse und dazu dann auch noch Punkte, an dem sich beide Graphen schneiden oder?
Müsste ich jetzt nun erst die beiden Funktionen gleichstellen damit ich eine hab und dann daraus sie Schnittpunkte ausrechnen? Ich bin einfach nur total irritiert von zwei Funktionen :(

Wäre super wenn mir jemand einen Ansatz geben könnte, weil weit komme ich erstmal nicht...

Danke schon mal ;)

Lg, Nini

        
Bezug
Zwei Graphen um 1. Achse: Hinweise
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 04.03.2009
Autor: Loddar

Hallo Nini!


Erstmal eine Skizze:

[Dateianhang nicht öffentlich]

Dann ist die Idee mit dem Gleichsetzen sehr gut, um die Integrationsgrenzen zu erhalten.

Für das gesuchte volumen kannst Du dann rechnen:
$$V \ = \ [mm] V_f-V_g [/mm] \ = \ [mm] \pi*\integral_{x_1}^{x_2}{f^2(x) \ dx}-\pi*\integral_{x_1}^{x_2}{g^2(x) \ dx} [/mm] \ = \ [mm] \pi*\integral_{x_1}^{x_2}{f^2(x)-g^2(x) \ dx}$$ [/mm]

Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Zwei Graphen um 1. Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Do 05.03.2009
Autor: die-nini

Mal eben zur Korrektur, weil bei der P-Q-Formel kommt da was komisches nachher für y-Werte raus..

also Gleichsetzen

-x+6=-2x²+4x+6
       = 2x²-5x   |:2
       = x²-2,5x

p-q Formel [mm] p=\bruch{5}{2} [/mm]
                  q= 0

also x1,2=  [mm] -\bruch{5}{8}\pm\wurzel{\bruch{25}{64}-0} [/mm]
               = [mm] \bruch{5}{8}\pm\bruch{5}{8} [/mm]
              [mm] x_{1}= [/mm] 0
              [mm] x_{2}= \bruch{5}{4} [/mm]

und jetzt [mm] x_{1}und x_{2} [/mm] in y= = x²-2,5x

SP (0/0) und [mm] (0/-\\bruch{25}{16} [/mm]

Und jetzt nochmal meine Frage... iwie sind die in der Zeichnung anders... da gehen beide Graphen/Geraden nicht durch den Ursprung also ich 0/0 FALSCH! aber iwie mach ich iwo die ganze Zeit den gleichen Fehler....

Bezug
                        
Bezug
Zwei Graphen um 1. Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Do 05.03.2009
Autor: Steffi21

Hallo,

[mm] 0=x^{2}-2,5x [/mm] hast du

1. Fehler: p= - [mm] \bruch{5}{2} [/mm]

2. Fehler: [mm] -\bruch{p}{2}=-(-\bruch{5}{4})=\bruch{5}{4} [/mm]

einfacher:

[mm] 0=x^{2}-2,5x [/mm]

0=x(x-2,5)

[mm] x_1= [/mm] ...

[mm] x_2= [/mm] ...

Steffi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de