www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - berechnung nach hauptsatz
berechnung nach hauptsatz < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

berechnung nach hauptsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 So 19.04.2009
Autor: Der_Marder

Aufgabe
(a) Berechnen Sie mit Hilfe des Hauptsatzes folgende Integrale:

a) [mm] \integral_{1}^{8}{\bruch{dx}{x\wurzel[3]{x}}} [/mm]

Erstma muss ich ja die Stammfunktion bilden. Das dx im Zähler verwirrt mich gerade noch. Kann ich das auch erstmal in [mm] \bruch{1}{x\wurzel[3]{x}} [/mm] dx umschreiben? Weil dann könnte ich das ja mit ln integrieren.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
berechnung nach hauptsatz: Potenzgesetze
Status: (Antwort) fertig Status 
Datum: 17:35 So 19.04.2009
Autor: Loddar

Hallo Marder,

[willkommenmr] !!


> a) [mm]\integral_{1}^{8}{\bruch{dx}{x\wurzel[3]{x}}}[/mm]
>  Erstma muss ich ja die Stammfunktion bilden. Das dx im
> Zähler verwirrt mich gerade noch. Kann ich das auch erstmal
> in [mm]\bruch{1}{x\wurzel[3]{x}}[/mm] dx umschreiben?

[ok] Ja, das geht natürlich ....


> Weil dann könnte ich das ja mit ln integrieren.

[schock] Wie das? Nein, das geht hier nicht.

Fasse gemäß MBPotenzgesetz um zu:
[mm] $$\bruch{1}{x*\wurzel[3]{x}} [/mm] \ = \ [mm] \bruch{1}{x^1*x^{\bruch{1}{3}}} [/mm] \ = \ [mm] \bruch{1}{x^{\bruch{4}{3}}} [/mm] \ = \ [mm] x^{-\bruch{4}{3}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
berechnung nach hauptsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 So 19.04.2009
Autor: Der_Marder

Ah, achso, hab ich nicht drau geachtet, dass da in beiden Faktoren ein x ist.

Das Integral wäre also

[mm] -\bruch{1}{\bruch{1}{4}} x^{-\bruch{1}{4}}, [/mm] oder? Und dann müsste man die obere minus die untere Summe rechnen?

b: [mm] \integral_{1}^{2}{(\bruch{3}{x} + 3x) dx} [/mm]

Das könnte man ja nun umschreiben in  [mm] \integral_{1}^{2}{(3x^{-1} + 3x) dx} [/mm] = 3 ln(x) + [mm] \bruch{1}{6}x² [/mm]

Wäre das korrekt?

Bezug
                        
Bezug
berechnung nach hauptsatz: Korrekturen
Status: (Antwort) fertig Status 
Datum: 18:54 So 19.04.2009
Autor: Loddar

Hallo Marder!


> Das Integral wäre also
>
> [mm]-\bruch{1}{\bruch{1}{4}} x^{-\bruch{1}{4}},[/mm] oder?

[notok] Was ergibt denn [mm] $-\bruch{4}{3}+1$ [/mm] ?


> Und dann müsste man die obere minus die untere Summe rechnen?

[ok]




> b: [mm]\integral_{1}^{2}{(\bruch{3}{x} + 3x) dx}[/mm]
>  
> Das könnte man ja nun umschreiben in  
> [mm]\integral_{1}^{2}{(3x^{-1} + 3x) dx}[/mm] = 3 ln(x) + [mm]\bruch{1}{6}x²[/mm]

[ok] Richtig.


Gruß
Loddar


Bezug
                                
Bezug
berechnung nach hauptsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 So 19.04.2009
Autor: Steffi21

Hallo Loddar und Marder, die Stammfunktion zu 3x ist [mm] \bruch{3}{2}x^{2}, [/mm] Steffi

Bezug
                                
Bezug
berechnung nach hauptsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 So 19.04.2009
Autor: Der_Marder

Achso, gut, dann hab ich mich beim ersten verschrieben. Da meinte ich  3 im Nenner.

Dann hab ich ein Problem bei der nächsten Aufgabe.

c: [mm] \integral_{1}^{n}{\bruch{nx^n}{n + 1} dx}, [/mm] n [mm] \in [/mm] N

Wie kann ich das nun integrieren?

Bezug
                                        
Bezug
berechnung nach hauptsatz: ausklammern
Status: (Antwort) fertig Status 
Datum: 19:07 So 19.04.2009
Autor: Loddar

Hallo Marder!


Lasse Dich durch den Bruch nicht verwirren. Du kannst hier einiges vor das Integral ziehen:

[mm] $$\integral_{1}^{n}{\bruch{n*x^n}{n + 1} \ dx} [/mm] \ = \ [mm] \bruch{n}{n + 1}*\integral_{1}^{n}{x^n \ dx} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                                                
Bezug
berechnung nach hauptsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 So 19.04.2009
Autor: Der_Marder

Ah, super, das wusste ich noch nicht, dass man das rausziehen kann.

Ein Problem hab ich hier aber noch.

[mm] \integral_{0}^{-1}{(\bruch{x^2}{a} + \bruch{b}{x^2}) dx} [/mm]

Rausziehen kann ich hier nichts, auch nicht, wenn man es auf einen Hauptnenner bringt.
Aber man könnte es umformen in [mm] \integral_{0}^{-1} {a^{-1}*x^2 + b*x^{-2} dx} [/mm]

Und das wäre doch nun [mm] \bruch{a^{-1}}{3}*x^3 [/mm] - [mm] b*x^{-1} [/mm]

Wäre das richtig?


Bezug
                                                        
Bezug
berechnung nach hauptsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 So 19.04.2009
Autor: Steffi21

Hallo, die Stammfunktion ist korrekt, jetzt sind aber noch die Grenzen einzusetzen, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de