www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - extremwertproblem
extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 16.12.2009
Autor: sunny1991

Aufgabe
Welche Punkte auf dem Graphen der Funktion [mm] f(x)=\bruch{2}{x^{2}} [/mm] haben com Ursprung den kleinsten Abstand?

Hallo,
also bei der Aufgabe komme ich iwie nicht weiter.
Also mein Ansatz war, dass ich die Abstandsformel genommen habe. Der Ursprung ist ja 0(0|0) also bleibt für den Abstand: [mm] d^{2}=a^{2}+b^{2} [/mm] wobei a und b die koordinate des punktes ist. Hier sieht man ja dass das der Satz des Pythagoras ist. Aber wie muss ich denn jetzt weiter machen bzw. wo muss ich jezt die Formel einsetzen?
Wäre nett wenn mir da jemand helfen könnte.
Danke schon mal im voraus.
lg

        
Bezug
extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 16.12.2009
Autor: fred97


> Welche Punkte auf dem Graphen der Funktion
> [mm]f(x)=\bruch{2}{x^{2}}[/mm] haben com Ursprung den kleinsten
> Abstand?
>  Hallo,
>  also bei der Aufgabe komme ich iwie nicht weiter.
> Also mein Ansatz war, dass ich die Abstandsformel genommen
> habe. Der Ursprung ist ja 0(0|0) also bleibt für den
> Abstand: [mm]d^{2}=a^{2}+b^{2}[/mm] wobei a und b die koordinate des

   der Abstand ist = [mm] \wurzel{a^2+b^2} [/mm]   !!!


> punktes ist. Hier sieht man ja dass das der Satz des
> Pythagoras ist. Aber wie muss ich denn jetzt weiter machen
> bzw. wo muss ich jezt die Formel einsetzen?
>  Wäre nett wenn mir da jemand helfen könnte.


Wie oben sei (a,b) ein Punkt auf dem Graphen von f, es ist also [mm] $b=\bruch{2}{a^2}$. [/mm] Damit ist der Abstand vom Ursprung

               $= [mm] \wurzel{a^2+\bruch{4}{a^4}}$ [/mm]

Gesucht ist also das Minimum der Funktion

             $d(a)= [mm] \wurzel{a^2+\bruch{4}{a^4}}$ [/mm]

Damit Du Dir das Leben nicht so schwer machst, kannst Du genausogut die Funktion

             $f(a)= [mm] d(a)^2= a^2+\bruch{4}{a^4}$ [/mm]

minimieren

FRED


>  Danke schon mal im voraus.
>  lg


Bezug
                
Bezug
extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 16.12.2009
Autor: sunny1991

wie kommst du denn am anfang auf [mm] b=\bruch{2}{a^{2}}? [/mm]

Bezug
                        
Bezug
extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Mi 16.12.2009
Autor: Steffi21

Hallo, du hast ja den Punkt (a;b) setze jetzt a in deine Funktionsgleichung ein

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mi 16.12.2009
Autor: sunny1991

ja stimmt hab ich dann auch gemerkt.
so also ich hab jetzt abgeleitet und die funktion ist dann [mm] f'(a)=2a-\bruch{16}{a^{5}}.So [/mm] jetzt müsste ich ja eig nur noch den extrempunkt ausrechnen nur ich komm da iwie nicht drauf, weil ich ja [mm] a^{5} [/mm] und 2a habe und es sich ja nicht lohnt da zu substituieren. Wie komme ich denn jetzt auf den tiefpunkt?

Bezug
                        
Bezug
extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Mi 16.12.2009
Autor: M.Rex

Hallo

Du hast:

[mm] 2a-\bruch{16}{a^{5}}=0 [/mm]
[mm] \gdw 2a=\bruch{16}{a^{5}} [/mm]
[mm] \gdw 2a^{6}=16 [/mm]
[mm] \gdw a^{6}=8 [/mm]
[mm] \Rightarrow a=\wurzel[6]{8}=\wurzel[6]{2^{3}} [/mm]

Diesen Wert setze bitte so (also nicht als gerundete Dezimalzahl) in die 2. Ableitung ein (notwendige Bed). und in die Ausgangsabstandsfunktion.

Marius

Bezug
                                
Bezug
extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Mi 16.12.2009
Autor: Steffi21

Noch ein kleiner Hinweis

[mm] a^{6}=8 [/mm]

es gibt zwei Lösungen, auch ein negatives a,

Steffi

Bezug
                                
Bezug
extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 16.12.2009
Autor: sunny1991

oh mann klar. heut stell ich aber auch nur doofe fragen;) egal vielen dank!

Bezug
                                
Bezug
extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mi 16.12.2009
Autor: fred97


> Hallo
>  
> Du hast:
>  
> [mm]2a-\bruch{16}{a^{5}}=0[/mm]
>  [mm]\gdw 2a=\bruch{16}{a^{5}}[/mm]
>  [mm]\gdw 2a^{6}=16[/mm]
>  [mm]\gdw a^{6}=8[/mm]
>  
> [mm]\Rightarrow a=\wurzel[6]{8}=\wurzel[6]{2^{3}}[/mm]
>  
> Diesen Wert setze bitte so (also nicht als gerundete
> Dezimalzahl)

So aber schon: $a= [mm] \wurzel{2}$ [/mm]

FRED


>  in die 2. Ableitung ein (notwendige Bed). und
> in die Ausgangsabstandsfunktion.
>  
> Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de