www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - newton-verfahren
newton-verfahren < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

newton-verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Mi 23.05.2007
Autor: sancho1980

hallo
auf http://de.wikipedia.org/wiki/Newton_Iteration#Erstes_Beispiel steht:
"Die Quadratwurzel einer Zahl a > 0 sind die Nullstellen der Funktion f(x) = 1 - [mm] \bruch{a}{x^2}." [/mm]

Koennt ihr mir erklaeren wieso?

Danke und Gruss

Martin

        
Bezug
newton-verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Mi 23.05.2007
Autor: Event_Horizon

Naja, berechne doch einfach mal die Nullstellen der Funktion, dann siehst du, daß das paßt.

letztendlich muß der rechte Teil doch 1 werden, damit 0=1-1 raus kommt. Und das ist dann der Fall, wenn a²=x ist.

Zugegeben, das ist bei Wikipedia etwas schell dahingeschrieben, aber da steckt auch nichts großes hinter.

Bezug
                
Bezug
newton-verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Mi 23.05.2007
Autor: sancho1980

Von 0 = 1 - [mm] \bruch{a}{x^2} [/mm] auf x = [mm] \wurzel{a} [/mm] zu kommen, das versteh ich. Aber umgedreht, wuerd ich x = [mm] \wurzel{a} [/mm] doch einfach umstellen in 0 = a - [mm] x^2; [/mm] wozu also noch eine 1 "hereinkonstruieren"?

Bezug
                        
Bezug
newton-verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Mi 23.05.2007
Autor: Steffi21

Hallo,

du brauchst doch keine 1 "reinkonstruieren", wenn [mm] 0=1-\bruch{a}{x^{2}} [/mm] gilt, so muß doch der Term [mm] \bruch{a}{x^{2}}=1 [/mm] sein,

Steffi


Bezug
                                
Bezug
newton-verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 23.05.2007
Autor: sancho1980

Mein Ausgangspunkt ist doch aber

x = [mm] \wurzel{a}, [/mm]

schliesslich geht es um die Berechnung der Wurzel von a. Meine Frage war, wieso man da auf 0 = 1 - [mm] \bruch{a}{x^2} [/mm] kommt. Wenn ich eine Seite von x = [mm] \wurzel{a} [/mm] auf 0 setzen will, dann quadrier ich einfach und subtrahier ich doch einfach x, also 0 = a - [mm] x^2, [/mm] verstehst du was ich meine?

Bezug
                                        
Bezug
newton-verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Mi 23.05.2007
Autor: leduart

Hallo sancho
wiki schreibt sehr genau, warum sie das als Bsp nehmen, und weiter hinten das, was du vorschlägst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de