nullteilerfreier ring < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:49 Sa 01.12.2007 | Autor: | lenz |
Aufgabe | sei R ein nullteiler freier ring mit eins
1) zeigen sie: hat r endlich viel elemente so ist R ein körper
2)betrachten sie in einem endlichen nullteilerfreien kommutativen
ring mit eins die m-fache summe des eins-elements mit sich selbst.
zeigen sie,dass es ein m [mm] \in \IN [/mm] gibt,so dass diese summe gleich der 0 [mm] \in [/mm] R
ist.zeigen sie nun:das kleinste m,für das dies gilt,ist eine primzahl |
hallo
also bei eins ist auf jedenfall zu zeigen das multiplk.
inverse gibt.also wenn m das größte element R ist
das für jeweils zwei bzw. ein elemente gilt a*b=r*m+1 r [mm] \in \IN \setminus [/mm] 0
kann mir jemand einen tip geben wie ich das machen kann.
bei zwei müßte man ja eigentlich zeigen dass das größte element R
element [mm] \IN [/mm] ist und das R zyklisch sein muß (oder irre ich).wenn ja hätte ich auch
kein plan wie das zu zeigen wäre,und wäre auch hier über tips dankbar
das mit der primzahl hatten wir in der vorlesung.gibt es sonst noch was was zu zeigen wäre?
gruß lenz
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:25 So 02.12.2007 | Autor: | andreas |
hi
> also bei eins ist auf jedenfall zu zeigen das multiplk.
> inverse gibt.
genau.
> also wenn m das größte element R ist
> das für jeweils zwei bzw. ein elemente gilt a*b=r*m+1 r [mm]\in \IN \setminus[/mm]
> 0
> kann mir jemand einen tip geben wie ich das machen kann.
bei $R$ handelt es sich im allgemeien nicht um einen restklassenring [mm] $\mathbb{Z}/m\mathbb{Z}$, [/mm] sondern um einen ganz beliebeigen ring und der hat natürlich keine elemente der gestalt, wie du sie anggegeben hast. und von "größten elementen" kann man in solchen ringen auch nicht sprechen, da es im allgemeien keine anordnung gibt.
was du dir überlegen kannst: sei $a [mm] \in [/mm] R [mm] \setminus \{0\}$ [/mm] ein von null verschiedenes element (was muss man nun für dieses element zeigen, damit $R$ ein körper ist?). betrachte die abbildung [mm] $\lambda_a: [/mm] R [mm] \longrightarrow [/mm] R; [mm] \; [/mm] x [mm] \longmapsto [/mm] ax$. probiere mal zu zeigen, dass diese injektiv ist (das folgt aus einer der voraussetzungen an den ring). wie ist denn der zusammenhang zwischen surjektivität und injektivität bei einer abbildung einer endlichen menge in sich selbst? und was hat man davon, wenn [mm] $\lambda_a$ [/mm] surjektiv ist? welches element liegt dann insbesondere im bild?
> bei zwei müßte man ja eigentlich zeigen dass das größte
> element R
> element [mm]\IN[/mm] ist und das R zyklisch sein muß (oder irre
> ich).wenn ja hätte ich auch
vergleiche dazu hier.
grüße
andreas
|
|
|
|