www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - quadratische säule aus Draht
quadratische säule aus Draht < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische säule aus Draht: Diskussion, mathem. denkfehler
Status: (Frage) beantwortet Status 
Datum: 16:37 Do 01.10.2009
Autor: nobodon

Aufgabe


Ein Draht wird zu einer quadratischen Säule geformt, welche 90 cm Kantenlänge insgesamt aufweist.  Berechne die einzelne Kantenlängen

a) wenn das Volumen max ist
b) wenn die Oberfläche max ist


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

mein frage ist wahrscheinlich etwas verblüffend, da ich die Aufgabe komplett gelöst hab, dennoch hat hier mein Mathelehrer in der lk-klausur die Aufgabe wie alle anderen FALSCH gelöst aus meiner Sicht. Meine Frage ist ob meine Lösung die richtige ist.
(erst mal die "offizielle", die meines Lehrers)

1) [mm] V=a^2 [/mm] * h
2) 90 = 8a * 4h  ---> nach h = (90-8a) :4
3  V = [mm] a^2 [/mm] * (90-8a) :4
4) V ableiten und 0 setzen was zur lösung

a= 7.5 führt und (welch ein wunder ) h ebenfalls 7.5 (Würfel-Körper)


so meine Lösung ist aber, dass wenn man ganz ganz ganz genau ließt man hier keinen "eulerschen Weg" findet , d. h. wenn man ein Draht zu einer quadratischen Säule formt, werden manche Wege(Kanten) mehrmals wieder benutzt, damit eine quadratische Säule zustande kommt. Demnach wäre die Aufgabe viel schwieriger:
(es werden die Grundseitenkanten 3mal wieder benutzt)

90 = 8b + 4c
b = a + 3a/8 ; die hohe h hab ich umbenannt in c
diese 3a sind die Seiten die das Draht wieder durchlaufen musst damit man eine quadratische Säule GEFORMT bekommt(d.h eine Seite, Grundseite, ist um dann 3/8 länger)

2) 90 = 8b + 4c
1) V = [mm] b^2 [/mm] * c
3) V = [mm] b^2 [/mm] * ( 90 - 8b) :4
4)V ableiten und 0 setzen
b = 7,5 (sind ja die gleichen Zahlen wie oben)
c = 7,5

Jetzt kommt der Unterschied
b = a (1 + 3/8)
a = 5,4545454545......
h = 5,4545454545......
( da sich h proportional zu a verhält wenn das Volumen maximal werden soll wird h immer den gleichen Wert wie a haben)

So, wer hat Recht?
Ich finde wenn man es genau nimmt habe ich Recht und mein Lehrer unrecht, keiner denkt nämlich daran, dass das Draht nicht einfach zu einer quadratischen Säule geformt werden kann ohne irgendwelche Seiten mehrmals durchlaufen musst.

Ich hoffe ihr könnt mir helfen
mit freundlich Grüßen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
quadratische säule aus Draht: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Do 01.10.2009
Autor: Gonozal_IX

Hiho,

einen "Fehler" seh ich hier nicht, weder bei dir noch bei deinem Lehrer, die Aufgabe ist einfach nicht eindeutig gestellt.
Erkläre deinem Lehrer, wie du sie verstanden hast, dann sollte das alles doch kein Problem darstellen.
Dein Lehrer gibt sich halt mit dem vereinfachten Problem zufrieden, du bist realistischer an die Sache rangegangen...... wo ist da das Problem?

MFG,
Gono.

Bezug
                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Do 01.10.2009
Autor: nobodon

ein fehler ist es insofern, da man ein draht verformt und nicht zerschneidet würden man es zerschneiden können
wäre eindeutlich

U = 8a + 4h
richtig , aber verformen ist eindeutlich etwas anderes

Bezug
        
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Do 01.10.2009
Autor: Steffi21

Hallo, interessant, interessant, deine Überlegung empfinde ich als richtig, du kannst ja auch den Würfel nicht durchgehend zeichnen, aber wenn du drei Kanten doppelt durchläufst, wird es am Ende kein Würfel mehr, jetzt wird es noch komplizierter, wofür entscheidest du dich, durchläufst du die Grundkante oder Höhe mehrmals, deine Herangehensweise finde ich gut, das als falsch abzustempeln empfinde ich aber deutlich übertrieben, Steffi

Bezug
                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Do 01.10.2009
Autor: Takeela

Ich würde deine Antwort nicht als gänzlich falsch betrachten, möchte aber einen Einwand bringen:

Nachdem der Fall, den du hier betrachtest in sich selbst nicht einmal eindeutig ist, wäre intuitiv von einer Vereinfachung auszugehen.  Schließlich ist eine Drahtsäule auf mehrere Arten zu formen, sodass man beispielsweise das mehrfache Durchlaufen einer Seite durch Pythagoras ;) also unter Einbindung der Diagonalen, vermeiden kann.

Vermutlich wirst du dich auf eine eher sinnlose Diskussion einlassen.  ;)

Bezug
                        
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Do 01.10.2009
Autor: nobodon

würde ich das tun mit der diagonale stimmt
90 = 8h +4h
immer noch nicht weil wir die diagonale mit einbeziehen müssen,
sinnlos wäre die diskussion nicht, könnte mir evt. eine 1 bringen in der klausur^^. Außerdem realistisch betrachtet, was naturwissenschaften sein sollten, ist die lösung meines lehrers falsch.

Bezug
                                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Do 01.10.2009
Autor: Takeela

Aber kuck mal, es wird nach den KantenLÄNGEN gefragt, und nicht, wie oft man eine hiervon durchlaufen muss um das Objekt tatsächlich zu realisieren (und/oder in diesem Zusammenhang nach der Gesamtlänge des benötigten Drahts).  Du gehst ja aufs Gymnasium und nicht auf eine Handwerkerschule...

Bezug
                                        
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Do 01.10.2009
Autor: nobodon

schon klar, aber in den naturwissenschaften sollte allles der realität entsprechen.
und richtig ich gehe aufs gymni und nicht auf die handwerkerschule. ich besuche die den l-kurs und gehe dabei realistisch vor und nicht intuitiv von der vereinfachung.

(soll nicht provozierend wirkend)
ich suche immer noch eine lösung des problems

Bezug
                                                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Do 01.10.2009
Autor: Takeela

Du solltest jedoch wissen, wenn du schon versuchst, analytisch vorzugehen, dass sich an einer Kantenlänge nichts ändert, wenn man sie beliebig oft durchläuft. ;)  Es ändert sich wohl der Gesamtweg, nicht jedoch die Kantenlänge, nach welcher in der Aufgabenstellung explizit gefragt wird.  Oder wird dein Schulweg auch immer länger, wenn du ihn mehrmals hin- und zurückgehst? ;)

Bezug
                                                        
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 Do 01.10.2009
Autor: nobodon

ändert sich der gesamtweg ändern sich die kantenlängen, ansonsten würden z.b.

kantenlängen = 50
Gesamtweg = 12*50=600

so jetzt ändern wir den gesamtweg, die kanten bleiben gleich

Kantenlänge = 100
Gesamtweg bleibt gleich, also = 600   <--ungleich--> 100*12

und mein schulweg wird länger weil ich mehr strecke zurücklege

Bezug
                                                                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 Do 01.10.2009
Autor: ChopSuey

Die Strecke, die du zuruecklegst, wird länger.
Nicht der Weg.

Grüße
ChopSuey

Bezug
                                                                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Do 01.10.2009
Autor: Takeela

Ich glaube, wir reden hier aneinander vorbei...  Ein einfaches Beispiel soll die Konfusion aufdecken:

Angenommen, dein Schulweg beläuft sich einfach auf [mm]x = dein Zuhause - Schule = 5 km[/mm].  Du gehst heute zweimal hin- und zurück, so hast du insgesamt eine Weglänge von [mm]l = 4*x = 4*5 km = 20 km[/mm] zurückgelegt.  Morgen gehst du einmal zur Schule und wieder nach Hause, sodass du bei einer Weglänge von [mm]l = 2*x = 2*5 km = 10 km[/mm] liegst.  Wie OFT du aber von zu Hause in die Schule und zurück nach Hause gehst, ändert den Strecke [mm]x[/mm] nicht.  
Ist das soweit verständlich?

Gut, nun möchtest du einen säulenförmiges Gebilde mit quadratischer Grundfläche aus Draht zusammenbauen, eben so, dass das Volumen maximal ist.  Die Formel hierfür hast du ja bereits korrekt angegeben.  

Hier nun mein Tipp, um die Aufgabenstellung, wie sie vermutlich gedacht war, zu verstehen:  Vergiss den Draht!  Die Aufgabenstellung könnte man auch analog so formulieren:
"Welche Seitenlängen [mm]a, b, c[/mm] muss ein säulenförmiger Körper mit quadratischer Grundfläche haben, damit sein Volumen maximal wird?"

Ich glaube hierdurch wird die Aufgabe wohl selbsterklärend...  Es ging hier nicht um den Draht, sondern darum, dass man die Parameter korrekt zusammenfügt.  Denn, und hier wirf ruhig noch einen Blick auf mein obiges Beispiel, die geforderten Kantenlängen [mm]a, b, c[/mm], die das Volumen maximieren, ändern sich NICHT, wenn du den Draht beliebig oft hin- und herwickelst.  [mm]a, b, c[/mm] sind einzig und allein durch

- die Form des Körpers (säulenförmig, mit quadratischer Grundfläche [mm]\rightarrow a = b[/mm]),
- die gesamte Kantenlänge [mm] 4*a + 4*b + 4*c = 8*a + 4*c[/mm] und
- die Forderung, das Volumen des Körpers [mm] V = abc [/mm] zu maximieren


bestimmt.

(Eine andere Situation läge vor, wenn (zusätzlich) nach der benötigten DrahtLÄNGE gefragt worden wäre.  Hier müsstest du tatsächlich die Anzahl der Hin- und Herläufe pro Kante berücksichtigen.  Dies ist aber laut deiner Aufgabenstellung, wie du sie hier gepostet hast, nicht der Fall!)

So, nun hoffe ich, dass wir die Missverständnisse aufklären können :)

Viele Grüße




Bezug
                                                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Do 01.10.2009
Autor: Steffi21

Hallo, ich habe mir die Aufgabe noch einmal angesehen der Quader (Würfel) hat 90cm Kantenlänge, es ist keine Aussage über die Drahtlänge, die kann also auch 2m sein, somit ist jetzt mein Standpunkt, es ist egal, ob du einige Kanten mehrfach "gehen" mußt, Steffi

Bezug
                                                        
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Do 01.10.2009
Autor: nobodon

der draht wird verformt also kann man stark annehmen dass das gesamte nachher 90cm sind

Bezug
                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Do 01.10.2009
Autor: nobodon

hmm danke für die antwort.

ich durchlaufe wie folgt:

alle grundseiten des bodens dann durch die höhe1 zur gegenüberliegende grundseite (Decke) diese durchlaufe ich bis ich wieder am Knotenpunkt der höhe1 bin (ich bin jetzt 9hintereinander durchgelaufen), anschließend laufe ich wieder über die letzte gekommende grundseite (also das 1mal)hoch und dann über h2. dann laufe ich wieder über eine grundseite ( das 2.mal) um zum knotenpunkt h3 zu kommen, anschließen noch mal über eine grundseite (3mal doppelt gelaufen), saodass ich h4 durchlaufen kann.
also grundseiten werden 3mal "zu viel" durchlaufen

Bezug
        
Bezug
quadratische säule aus Draht: Gratulation
Status: (Antwort) fertig Status 
Datum: 22:46 Do 01.10.2009
Autor: Al-Chwarizmi

Hallo nobodon,

du hast mit deiner Argumentation sicher recht,
falls der Draht bei der "Verformung" nicht zer-
schnitten und neu zusammengelötet werden
darf. Vermutlich war aber gemeint, dass genau
dies erlaubt (und damit die geometrische Aufgabe
einfacher werden) soll.

Ich gratuliere dir trotzdem dazu, dass du die
Schwäche einer nicht so klar definierten Auf-
gabenstellung aufgespürt hast !

LG    Al-Chw.

Bezug
        
Bezug
quadratische säule aus Draht: Antwort
Status: (Antwort) fertig Status 
Datum: 00:39 Fr 02.10.2009
Autor: Al-Chwarizmi


> Ein Draht wird zu einer quadratischen Säule geformt,
> welche 90 cm Kantenlänge insgesamt aufweist.  Berechne die
> einzelne Kantenlängen
>
> a) wenn das Volumen max ist
>  b) wenn die Oberfläche max ist
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> mein frage ist wahrscheinlich etwas verblüffend, da ich
> die Aufgabe komplett gelöst hab, dennoch hat hier mein
> Mathelehrer in der lk-klausur die Aufgabe wie alle anderen
> FALSCH gelöst aus meiner Sicht. Meine Frage ist ob meine
> Lösung die richtige ist.
>  (erst mal die "offizielle", die meines Lehrers)
>  
>  1) [mm]V=a^2[/mm] * h
>  2) 90 = 8a * 4h        [notok]

Das müsste natürlich heissen:  90=8a+4h  !!


LG


Bezug
                
Bezug
quadratische säule aus Draht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Fr 02.10.2009
Autor: nobodon

right thx

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de