www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - quotientenregel
quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quotientenregel: zusammenfassen
Status: (Frage) beantwortet Status 
Datum: 17:43 Fr 10.01.2014
Autor: b.reis

Aufgabe
bestimmen Sie f'(x) und vereinfachen Sie soweit möglich!

[mm] \bruch{3x}{(x-2)^2} [/mm]


Hallo,


ich hab hiermit so meine Probleme und zwar bin ich folgendermaßen vorgegangen:

Ich habe die Quotienten-Regel benutzt


[mm] f'(x)=\bruch{1*(x-2)^2-(3x(2(x-2))*1)}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)^2-(3x(2x-4))}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)^2-(6x^2-12x)}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)^2-6x(x-2))}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{(x-2)(-6x+(x-2))}{(x-2)^4} [/mm]

[mm] f'(x)=\bruch{-5x-2}{(x-2)^3} [/mm]

Stimmt aber nicht das Ergebnis ist [mm] f'(x)=\bruch{3x+6}{(x-2)^3} [/mm]

Erkennt jemand den Fehler, ich bin im ausklammern und zusammenfassen nicht so gut

danke

benni




        
Bezug
quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 10.01.2014
Autor: DieAcht

Hallo,


Die Ableitung von 3x ist 3.


DieAcht

Bezug
        
Bezug
quotientenregel: Zähler falsch abgeleitet
Status: (Antwort) fertig Status 
Datum: 17:58 Fr 10.01.2014
Autor: mister_xyz

ja, der Zähler ist falsch abgeleitet: 3x abgeleitet ist 3 und nicht 1

Bezug
        
Bezug
quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Fr 10.01.2014
Autor: Paper090

[mm] \bruch{u}{v}=\bruch{u'*v-u*v'}{v^{2}} [/mm]

u'= 3
v'= 2(x-2)

f'(x)= [mm] \bruch{3*(x-2)^{2}-3x*2(x-2)}{(x-2)^4} [/mm]

= [mm] \bruch{3}{(x-2)^{2}}-\bruch{6x}{(x-2)^{3}} [/mm]

Gruß

Bezug
                
Bezug
quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Sa 11.01.2014
Autor: b.reis

[mm] \bruch{3\cdot{}(x-2)^{2}-3x\cdot{}2(x-2)}{(x-2)^4} [/mm]

Bei diesem Minuszeichen in der Mitte handelt es sich um das vorzeichen der 3x oder ist es das vorzeichen der Klammer also - (v'*u)

denn so würde sich auch das Vorzeichen der x-2 ändern


M.f.G,


benni

Bezug
                        
Bezug
quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Sa 11.01.2014
Autor: Diophant

Hallo,

> [mm]\bruch{3\cdot{}(x-2)^{2}-3x\cdot{}2(x-2)}{(x-2)^4}[/mm]

>

> Bei diesem Minuszeichen in der Mitte handelt es sich um das
> vorzeichen der 3x oder ist es das vorzeichen der Klammer
> also - (v'*u)

>

Was für eine Frage??? Wenn in einer Formel an einer Stelle ein Minuszeichen steht, und in einer Anwendung dieser Formel genau an der gleichen Stelle ebenfalls ein Minuszeichen, wo kommt das dann wohl her???
  

> denn so würde sich auch das Vorzeichen der x-2 ändern

Den Sinn dieser Bemerkung kann man nicht verstehen, muss man wohl aber auch nicht.

Gruß, Diophant

Bezug
                
Bezug
quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Sa 11.01.2014
Autor: b.reis

Hallo,

also wenn ich das hier zusammenfasse [mm] \bruch{3\cdot{}(x-2)^{2}-3x\cdot{}2(x-2)}{(x-2)^4} [/mm]

[mm] =\bruch{(x-2)(3(x-2)-6x)}{(x-2)^4} [/mm]

Kürze

[mm] =\bruch{3(x-2)-6x}{(x-2)^3} [/mm]

ausmultipliziere

[mm] =\bruch{-3x-6}{(x-2)^3} [/mm]


Mein Ergebnis sollte aber  [mm] \bruch{3x+6}{(x-2)^3} [/mm] sein ?




M.f.G.


benni

Bezug
                        
Bezug
quotientenregel: Musterlösung falsch
Status: (Antwort) fertig Status 
Datum: 13:09 Sa 11.01.2014
Autor: Loddar

Hallo Benni!


> ausmultipliziere
>
> [mm]=\bruch{-3x-6}{(x-2)^3}[/mm]

[daumenhoch] Das ist richtig.


> Mein Ergebnis sollte aber [mm]\bruch{3x+6}{(x-2)^3}[/mm] sein ?

Das stimmt nicht, zumindest nicht als 1. Ableitung zu $f(x) \ = \ [mm] \bruch{3x}{(x-2)^2}$ [/mm] .


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de