www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - zeige, dass Flächen identisch
zeige, dass Flächen identisch < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeige, dass Flächen identisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Fr 25.03.2011
Autor: Giraffe

Hallo,
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
zeige, dass Flächen identisch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Fr 25.03.2011
Autor: MathePower

Hallo Giraffe,

> Hallo,


Von den zwei Quadraten mit der Seitenlänge r
ziehst Du je eine Viertelkreisfläche ab.

Insgesamt ziehst Du von diesen zwei Quadraten
der Seitenlänge eine Halbkreisfläche ab.


Gruss
MathePower

Bezug
                
Bezug
zeige, dass Flächen identisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 25.03.2011
Autor: abakus


> Hallo Giraffe,
>  
> > Hallo,
>  
>
> Von den zwei Quadraten mit der Seitenlänge r
> ziehst Du je eine Viertelkreisfläche ab.
>  
> Insgesamt ziehst Du von diesen zwei Quadraten
>  der Seitenlänge eine Halbkreisfläche ab.
>  
>
> Gruss
>  MathePower

Noch einfacher ausgedrückt: Teile den äußeren gelben Halbkreis in zwei Viertelkreise. Begründe, dass diese Viertelkreise genau in die beiden Lücken der schraffierten Fläche passen.
Gruß Abakus


Bezug
                
Bezug
zeige, dass Flächen identisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Sa 26.03.2011
Autor: Giraffe

Hallo MathePower,

> Von den zwei Quadraten mit der Seitenlänge r
> ziehst Du je eine Viertelkreisfläche ab.
>  
> Insgesamt ziehst Du von diesen zwei Quadraten
> der Seitenlänge eine Halbkreisfläche ab.

Nichts anderes habe ich doch getan!

2r*2r ist das gr. Quadrat, wo der gelbe Tropfen drin ist.
Wenn man davon einen Vollkreis abzieht,
dann hat man 4 Ecken als restliche Fläche.

[mm] (2r)^2 [/mm] - [mm] \pi*r^2 [/mm]

Diese 4 Ecken halbiert ergeben 2 Ecken.

[mm] \bruch{(2r)^2 - \pi*r^2}{2} [/mm]

Und das ist die Spitze des Tropfens, die oberere Hälfte des Tropfens.

Jetzt guck ich mir mal an, was Abakus meint.

Danke u. erstmal tschüß
Gruß
Sabine

Bezug
                        
Bezug
zeige, dass Flächen identisch: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 26.03.2011
Autor: Steffi21

Hallo,

schraffierte Fläche: zwei Quadrate mit Seitenlänge r

[mm] 2*r^{2} [/mm]

gelbe Fläche: Halbkreis plus weiße Fläche minus zwei Viertelkreise

[mm] \bruch{1}{2}*\pi*r^{2}+2*r^{2}-2*\bruch{1}{4}*\pi*r^{2} [/mm]

Steffi



Bezug
                                
Bezug
zeige, dass Flächen identisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 So 27.03.2011
Autor: Giraffe

hat sich nun alles geklärt.
Verständnisschwierigkeiten hatte ich bei dieser Aufg. ja nicht.
Das formalistische Gleichsetzen ergab nicht das gleiche u. hätte es aber.
Mit einer anderen formalistischen Gleichstellung der Flächen ergab es dann das gleiche. Dann habe ich mich nochmal auf die Suche nach dem Unterschied gemacht u. festgestellt, dass ich einem ganz blöden schusseligen schlunzigen Fehler gemacht hatte.
DANKE euch allen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de