www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - zur Matrix alle Matrizen X..
zur Matrix alle Matrizen X.. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zur Matrix alle Matrizen X..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Di 08.01.2008
Autor: Saschman

Aufgabe
Bestimmen Sie zur Matrix  A= [mm] \pmat{ 1 & 0 \\ -1 & 1 } alle [/mm] Matrizen X, die die Matrixgleichung [mm] A*X+X*A^{T} [/mm] = [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] erfüllen.

So ich bin jetzt wie folgt herangegangen.

Matrix A mit Matrix X [mm] \pmat{ a & b \\ c & d } [/mm] multipliziert. Da erhalte ich [mm] \pmat{ a & b \\ -a+c & -b+d } [/mm]

Aus X* [mm] A^{T} [/mm] ergibt sich [mm] \pmat{ -a & a+b \\ -c & c+d } [/mm]

addiere ich jetzt diese Matritzen erhalte ich [mm] \pmat{ 0 & a+2b \\ -a & -b+c+2d } [/mm]

aber was muss ich jetzt noch tun...ich weiss hier nicht weiter..

Hoffe auf eine Antwort..

LG
Sascha

        
Bezug
zur Matrix alle Matrizen X..: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Di 08.01.2008
Autor: steppenhahn

Der Ansatz ist richtig,
AX hast du auch richtig berechnet, nur bei [mm] XA^{T} [/mm] ist es falsch:

[mm] A^{T} [/mm] = [mm] \pmat{ 1 & -1 \\ 0 & 1 } [/mm]

[mm] XA^{T} [/mm] = [mm] \pmat{ a - b & b \\ c - d & d } [/mm]

Der Gedankengang ist auch weiter richtig, die Matrizen zu addieren:

   AX + [mm] XA^{T} [/mm]

= [mm] \pmat{a & b \\ -a+c & -b+d} [/mm] + [mm] \pmat{ a - b & b \\ c - d & d } [/mm]

= [mm] \pmat{2a - b & 2b \\ -a - d + 2c & -b+2d} [/mm]

Naja, und diese linke Seite soll nun [mm] \pmat{1 & 0 \\ 0 & 1} [/mm] sein, das heißt du musst die Felder der Matrizen links und rechts der gegebenen Gleichung komponentenweise vergleichen und es ergibt sich ein Gleichungssystem, das du lösen musst:

2a - b = 1
2b = 0
-a -d + 2c = 0
-b + 2d = 1

Die Lösungen sind:

a = [mm] \bruch{1}{2} [/mm]
b = 0
c = [mm] \bruch{1}{2} [/mm]
d = [mm] \bruch{1}{2} [/mm]

Also muss die Matrix X folgermaßen aussehen:

X = [mm] \pmat{ \bruch{1}{2} & 0 \\ \bruch{1}{2} & \bruch{1}{2} } [/mm]



Bezug
                
Bezug
zur Matrix alle Matrizen X..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:35 Mi 09.01.2008
Autor: Saschman

Super danke..jetzt verstehe ich das....

Aber in der Aufgaben Stellung steht ermittle ALLE Matritzen X...ist es in diesem Fall nur die Eine..da es ja quasi eine Eindeutige Lösung gibt?

DANKE
LG
Sascha

Bezug
                        
Bezug
zur Matrix alle Matrizen X..: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Mi 09.01.2008
Autor: steppenhahn

Eindeutige Herleitung --> Eindeutige Lösung

Ja.

Bezug
                                
Bezug
zur Matrix alle Matrizen X..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:09 Mi 09.01.2008
Autor: Saschman

Hy,
nochmal danke für die schnelle Antwort..ich habe es nochmal nachgerechnet...aber komme bei  [mm] X*A^{T} [/mm] nicht auf  [mm] \pmat{ a - b & b \\ c - d & d } [/mm]  ...sondern immer auf  [mm] \pmat{ a & -a+b \\ c & -c+d } [/mm]

das Ergebnis der ganzen Aufgabe sähe dann so aus:

[mm] \pmat{ 0,5 & 0,25 \\ 0,25 & 0,5 } [/mm]


Bin ich auf dem Holzweg?


Bezug
                                        
Bezug
zur Matrix alle Matrizen X..: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Mi 09.01.2008
Autor: Steffi21

Hallo,

[mm] A=\pmat{ 1 & 0 \\ -1 & 1 } [/mm]

[mm] A^{T}=\pmat{ 1 & -1 \\ 0 & 1 } [/mm]

[mm] X=\pmat{ a & b \\ c & d } [/mm]

somit:

[mm] X*A^{T}=\pmat{ a & b \\ c & d }*\pmat{ 1 & -1 \\ 0 & 1 }=\pmat{ a & -a+b \\ c & -c+d } [/mm]


Deine Überlegung ist also korrekt,

Überprüfe bitte noch einmal d= ...

Steffi


Bezug
                                                
Bezug
zur Matrix alle Matrizen X..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Mi 09.01.2008
Autor: Saschman

oha...d müsste 0,75 sein..

Bezug
                                                        
Bezug
zur Matrix alle Matrizen X..: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mi 09.01.2008
Autor: Steffi21

Hallo, und d=0,75 ist korrekt, Steffi

Bezug
                
Bezug
zur Matrix alle Matrizen X..: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 09:15 Mi 09.01.2008
Autor: angela.h.b.



Hallo,

was Du tust, ist richtig.

>  AX hast du auch richtig berechnet, nur bei [mm]XA^{T}[/mm] ist es
> falsch:

Leider hast Du auch [mm] XA^{T} [/mm] falsch berechnet,

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de