www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Vorkurszettel
Kursdaten anzeigenListe aller VorkurseDruckansicht
Sigrid Sprock
Marc O. Sandlus
www.matheraum.de
Vorbereitung auf das Zentralabitur in Mathematik in NRW
Aufgabenblatt 7
Abgabe: Fr 30.03.2007 14:00
23.03.2007
Aufgabe 1
Aufg.-Nr.: 10 Bereich: kombinierte Funktion Kursart: GK WTR
Wellness-Liege
Im „WOLF-RENZ_DESIGN_ZENTRUM“ wird eine neue Generation an Wellness-Liegen entwickelt. Für das Topmodell „ABI 2006“ haben die Designer geschickt Ausschnitte aus verschiedenen Funktionsgraphen zusammengesetzt.

[Dateianhang]

a) Die Fußstütze ergibt sich als Verlängerung (Teil der Tangente) an das Gestell/Beinauflage g, wobei für g die Gleichung  

$ g(x) = \bruch{1}{4} e^x \cdot (x-2)^2 $
gilt.

a1) Weisen Sie nach, dass für die 1. Ableitung von g gilt:
$ g'(x) = \bruch{1}{4} e^x \cdot (x^2-2x) $

a2) Ermitteln Sie die Gleichung der Tangente an g, wenn der Übergang an x = -2 erfolgt.
a3) Geben Sie den Bereich für x an, in dem die Tangente als Fußstütze genutzt werden kann.

b) Als Sitzschale haben die Designer einen Ausschnitt aus der Parabel s (2. Ordnung) gewählt. Dabei haben sie für s die Gleichung

$ s(x) = \bruch{e}{4e-8}\ (x^2-ex+2e-3) $  

ermittelt.
b1) Zeigen Sie, dass die Graphen von g und s an der Stelle x = 1 knickfrei ineinander übergehen.
b2) Berechnen Sie die exakte Stelle des tiefsten Punktes der Sitzschale.
(Rechnungen mit e, keine Rundungen)

c) Für die seitliche Verblendung des Bereichs zwischen Fußstütze, Gestell/Beinauflage und Erdboden (x-Achse) sollen spezielle bebürstete Aluminiumbleche zum Einsatz kommen, die aus rechteckigen Blechen herausgeschnitten werden. Hier gilt: LE 1 entspricht 0,25m.
c1) Geben Sie mit Hilfe einer Schraffur die beschriebene Fläche in der Gesamtansicht an.
c2) Ermitteln Sie die Mindestlänge und die Mindestbreite, die das rechteckige Blech aufweisen muss.
c3) Eine Stammfunktion der Funktion g lautet:

$ G(x) = \bruch{1}{4} e^x \cdot (x^2 - 6x + 10) $

Ermitteln Sie den Flächeninhalt eines fertig ausgeschnittenen Verblendungsblechs in m2.

Zusammengestellt von den Fachdezernenten Mathematik der 5 Bezirksregierungen in NRW 16

[]Aufgabensammlung genehmigter Abituraufgaben 2006, die auch die Vorgaben des Zentralabiturs 2007 erfüllen (PDF-Datei), Aufgabe 10.

Kursdaten anzeigenListe aller VorkurseDruckansicht
^ Seitenanfang ^
www.vorhilfe.de