www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Cosinus
Cosinus < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cosinus: funktion
Status: (Frage) beantwortet Status 
Datum: 23:36 Mo 04.02.2013
Autor: tiger1

Aufgabe
Hallo hab gerade probleme bei einer Aufgabe:
Für welche x element [ 0 , 2pi ] ist die Gleichung erfüllt?

cos(2x) = cos x
Soll ich auf beiden seiten den arcos ziehen ?

Dann habe ich :

2x = x

ABer das hilft nicht so richtig .

Bitte hilft mir.

nicht gepostet

        
Bezug
Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 Mo 04.02.2013
Autor: leduart

Hallo
eine Lösung, x=0 hast du damit richtig, aber arccos ist mehrdeutig, oder nur zw den Argumenten 0 bis [mm] \pi [/mm] definiert, deshalb
[mm] cos(2x)=2cos^2(x)-1 [/mm] aus Additionstheorem und [mm] sin^2+cos^2=1 [/mm]
dann die qu, Gl für cos lösen.
gruss leduart

Bezug
        
Bezug
Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:02 Di 05.02.2013
Autor: tiger1

Dann hätte ich :

[mm] 2*cos^2 [/mm] x - 1 = cos x

-1 = [mm] cosx/2cos^2 [/mm] x  



-1 = 1/cos x

Auf beiden Seiten Kehrwert :

-cos x = 1

Stimmt das soweit ?

Und für x = pi  wäre die Gleichung erfüllt oder ?


Jetzt cos x = 0

Das wäre für:

1/2 pi    und 3/2 pi stimmts?

Bezug
                
Bezug
Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Di 05.02.2013
Autor: M.Rex


> Dann hätte ich :
>  
> [mm]2*cos^2[/mm] x - 1 = cos x
>  
> -1 = [mm]cosx/2cos^2[/mm] x  


Das ist gelinge gesagt, eine gruselige Umformung.
Erstens macht die Division durch 2cos²(x) keinen Sinn, zweitens hättest du auf der rechten Seiten auch noch falsch gekürzt.

Du hast:

[mm] $2\cos^2(x)-1=\cos(x) [/mm]

Nun hast du den Tipp bekommen, dass dieses eine quadratische Gleichung sei, wenn du u=cos(x) setzt.

Dann bekommst du die Gleichung:
[mm] 2u^{2}-1=u [/mm]
[mm] \Leftrightarrow2u^{2}-u-1=0 [/mm]

Nun nutze eine Lösungsformel für quadratische Gleichungen, dann hast du Lösungen für u. Danach Vergiss die Rücksubstituition nicht, du suchst ja eigentlich x.

Marius


Bezug
                        
Bezug
Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Di 05.02.2013
Autor: tiger1

Da kriege ich u1 =1 und u2 = - 1/2 raus.

Wie gehe ich weiter vor?

cos x = 1  bei x= 0 und 2pi

cox = - 1/2  bei 2/3 pi und 4/3 pi

Das wars oder wie?

Bezug
                                
Bezug
Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Di 05.02.2013
Autor: M.Rex


> Da kriege ich u1 =1 und u2 = - 1/2 raus.
>  

Ok

> Wie gehe ich weiter vor?
>  
> cos x = 1  bei x= 0 und 2pi
>  

Ok

> cox = - 1/2  bei 2/3 pi und 4/3 pi

Auch ok.

>  
> Das wars oder wie?

Ja, auch das gehört zu einer Aufgabe, zu erkennen, wann Schluß ist.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de