www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Kurvendiskussion
Kurvendiskussion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 04.03.2012
Autor: Trivial_

Aufgabe
Führen Sie bei der Funktion f(x)= [mm] x^{2} [/mm] * [mm] e^{-1/x^2} [/mm] mit f(0)= 0 eine Kurvendiskussion durch.
Bestimmen Sie also Nullstellen, lokale (globale) Extrema, auf welchen Teilintervallen die Funktion (streng) monoton fallend bzw. wachsend ist, Wendepunkte. Bestimmen Sie auch auf welchen Teilintervallen die Funktion konex bzw. konkav ist!

Ich habe bei der ersten Ableitung schon einen Hänger, dieses [mm] e^{- 1/x^2} [/mm] bereitet mir Kopfschmerzen. Ich weiß nicht mal ansatzweise wie ich ableiten kann. Der Rest der Fragestellung wäre kein Problem, bis auf konvex und konkav ich habe meine Skripten und Bücher schon durchgeschaut aber ich finde nichts dazu. Wenn mir jemand vl kurz erklären könnte wie ich zeige das die Funktion konvex oder konkav ist.
Vielen vielen Dank schon im Voraus

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 04.03.2012
Autor: MathePower

Hallo Trivial_,

> Führen Sie bei der Funktion f(x)= [mm]x^{2}[/mm] * [mm]e^{-1/x^2}[/mm] mit
> f(0)= 0 eine Kurvendiskussion durch.
>  Bestimmen Sie also Nullstellen, lokale (globale) Extrema,
> auf welchen Teilintervallen die Funktion (streng) monoton
> fallend bzw. wachsend ist, Wendepunkte. Bestimmen Sie auch
> auf welchen Teilintervallen die Funktion konex bzw. konkav
> ist!
>  Ich habe bei der ersten Ableitung schon einen Hänger,
> dieses [mm]e^{- 1/x^2}[/mm] bereitet mir Kopfschmerzen. Ich weiß
> nicht mal ansatzweise wie ich ableiten kann. Der Rest der


Für diese Funktion benutzt Du erstmal die Kettenregel.

Für die innere Ableitung benutzt Du dann die Potenzregel.


> Fragestellung wäre kein Problem, bis auf konvex und konkav
> ich habe meine Skripten und Bücher schon durchgeschaut
> aber ich finde nichts dazu. Wenn mir jemand vl kurz
> erklären könnte wie ich zeige das die Funktion konvex
> oder konkav ist.


Konvex ist eine Funktion, wenn [mm]f''\left(x\right) \ge 0[/mm] gilt.
Konkav ist eine Funktion, wenn [mm]f''\left(x\right) \le 0[/mm] gilt.


>  Vielen vielen Dank schon im Voraus


Gruss
MathePower

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 04.03.2012
Autor: Trivial_

ich verstehe nur nicht wie ich [mm] e^{1/x^2} [/mm] ableite, wurde ^2 stehen würde ich es wissen oder [mm] ^x^2. [/mm]

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 04.03.2012
Autor: Steffi21

Hallo

wie schon gesagt, benutze die Kettenregel

[mm] \bruch{2}{x^3}*e^{-\bruch{1}{x^2}} [/mm]

der Faktor [mm] \bruch{2}{x^3} [/mm] entsteht durch die Ableitung des Exponenten [mm] -\bruch{1}{x^2} [/mm]

Steffi

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 So 04.03.2012
Autor: Trivial_

ich habe jetzt für die erste ableitung

[mm] 2*x*e^{-1/x^2} [/mm] - [mm] x^2/2x*e^{-1/x^2} [/mm]

kann das jetzt stimmen?!

Vielen Dank und lG


Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 So 04.03.2012
Autor: MathePower

Hallo Trivial_,

> ich habe jetzt für die erste ableitung
>
> [mm]2*x*e^{-1/x^2}[/mm] - [mm]x^2/2x*e^{-1/x^2}[/mm]

>


Hier muss es doch lauten:

[mm]2*x*e^{-1/x^2} \blue{+} x^2*\red{\bruch{2}{x^{3}}}*e^{-1/x^2}[/mm]


> kann das jetzt stimmen?!

>

> Vielen Dank und lG
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de